Ⅰ 关于圆的计算公式有哪些
圆的面积:πr^2
圆的周长:2πr
半圆的周长:πr+2r
圆环的面积:(R^-r^)π
圆柱的体积:πr^2h
圆柱的表面积:πr^2*2+πdh
圆环的体积:(R^2-r^2)πh
注:半径r,圆周率π,直径d,R大半径,h高
Ⅱ 有关圆的所有公式。
一、周长公式
1、圆的周长 :C=2πr (r:半径)
2、半圆周长:C=πr+2r
二、圆的面积
1、面积:S=πr²
2、半圆面积:S=πr²/2
三、弧长角度公式
1、扇形弧长:L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
2、扇形面积:S=nπ R²/360=LR/2(L为扇形的弧长)
3、圆锥底面半径: r=nR/360(r为底面半径)(n为圆心角)
4、扇形面积公式:S=nπr²/360=rl/2
R:半径,n:弧所对圆心角度数,π:圆周率,L:扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n。
四、圆的方程:
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
2、圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。
五、圆和点的位置关系:
以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r.
六、直线与圆有3种位置关系:
无公共点为相离;
有两个公共点为相交;
圆与直线有唯一公共点为相切。这条直线叫做圆的切线,这个唯一的公共点叫做切点.以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
拓展资料:
一、圆的性质
(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
(2)有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
(3)有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比正方形、长方形、三角形的面积大。
参考链接:圆_网络
Ⅲ 关于圆形的所有的公式
周长:C=2πr (r半径)
面积:S=πr²
半圆周长:C=πr+2r
半圆面积:S=πr²/2
圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。
圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
(3)圆有关的计算以及证明常用方法扩展阅读:
圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用字母π表示,
≈3.1415926535......计算时通常取近似值3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,
不能直接说圆的周长是直径的3.14倍。
形:
1.由弦和它所对的一段弧围成的图形叫做弓形。
2. 由圆心角的两条半径和圆心角所对应的一段弧围成的图形叫做扇形(sector)。
点和圆位置关系
①P在圆O外,则 PO>r。
②P在圆O上,则 PO=r。
③P在圆O内,则 PO<r。
反之亦然。
平面内,点P(x0,y0)与圆(x-a)²+(y-b)²=r²的位置关系判断一般方法是:
①如果(x0-a)²+(y0-b)²<r²,则P在圆内。
②如果(x0-a)²+(y0-b)²=r²,则P在圆上。
③如果(x0-a)²+(y0-b)²>r²,则P在圆外。
Ⅳ 与圆有关的证明计算常用到的定理
这是复制的,哪个不理解补充我会继续回答你。对了这里的绝大多数都是有用的。是需要掌握的
1圆是定点的距离等于定长的点的集合
2圆的内部可以看作是圆心的距离小于半径的点的集合
3圆的外部可以看作是圆心的距离大于半径的点的集合
4同圆或等圆的半径相等
5到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
6和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
7到已知角的两边距离相等的点的轨迹,是这个角的平分线
8到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
9定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
Ⅳ 圆的计算公式有哪些
在数学中解决问题,通常公式是很重要的一部分,记住公式可以很方便的去解决问题,大大减少了工作量和工作时间,一个公式就可以解决一类问题,那么,圆的面积公式是什么呢?
soso_tc_slider_img
面积公式
圆面积公式是圆周率*半径的平方,用字母可以表示为:S=πr或S=π*(d/2)。(π表示圆周率,r表示半径,d表示直径)。
圆的半径:r
直径:d
圆周率:π(数值为3.1415926至3.1415927之间……无限不循环小数),通常采用3.14作为π的数值
圆面积:S=πr;S=π(d/2)
半圆的面积:S半圆=(πr;)/2
圆环面积:S大圆-S小圆=π(R-r)(R为大圆半径,r为小圆半径)
圆的周长:C=2πr或c=πd
半圆的周长:d+(πd)/2或者d+πr
有关圆周角和圆心角的性质和定理
①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。
Ⅵ 圆的计算公式都有哪些
半径r、圆周率π、直径d、R大半径、h高
1、圆的面积:πr^2
2、圆的周长:2πr
3、半圆的周长:πr+2r
4、圆环的面积:(R^-r^)π
5、圆柱的体积:πr^2h
6、圆柱的表面积:πr^2*2+πdh
7、圆环的体积:(R^2-r^2)πh
Ⅶ 圆的计算公式怎么算圆的周长计算公式
圆的周长=圆周率×直径
c=πd
圆的周长=圆周率×2×半径c=2πr
1.到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心,通常用字母“o”表示。
2.连接圆心和圆周上任意一点之间的连线叫做半径,通常用字母“r”表示。
3.通过圆心并且两个端点都在圆周上的线段叫做直径,通常用字母“d”表示。
垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:(1)经过切点垂直于过切点的半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。
Ⅷ 圆的公式
1.圆的周长C=2πr=πd
2.圆的面积S=πr²
3.扇形弧长l=nπr/180
4.扇形面积S=nπr²/360=rl/2
5.圆锥侧面积S=πrl
〖圆的定义〗
几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
(8)圆有关的计算以及证明常用方法扩展阅读:
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圆心,r 是半径。
圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。
第一定义
在同一平面内到定点的距离等于定长的点的集合叫做圆 (circle)。这个定点叫做圆的圆心。
圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆。
圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。
第二定义
平面内一动点到两定点的距离平方之比,等于一个不为1的常数,则此动点的轨迹是圆。
证明:点坐标为(x1,y1)与(x2,y2),动点为(x,y),距离比为k,由两点距离公式。满足方程(x-x1)2+ (y-y1)2= k2×[ (x-x2)2+ (y-y2)2] 当k不为1时,整理得到一个圆的方程。
几何法:假设定点为A,B,动点为P,满足|PA|/|PB| = k(k≠1),过P点作角APB的内、外角平分线,交AB与AB的延长线于C,D两点由角平分线性质,角CPD=90°。由角平分线定理:PA/PB = AC/BC = AD/BD =k,注意到唯一k确定了C和D的位置,C在线段AB内,D在AB延长线上,对于所有的P,P在以CD为直径的圆上。
Ⅸ 圆的所有计算公式(要字母公式)
圆的周长:c=2πr=πd
半圆的周长:c=πr+2r
圆面积:S=πr²
半圆的面积:S=(πr²)÷2
圆环面积: S大圆-S小圆=π(R²-r²)(R大圆半径)
半圆周长=π×r+d
注:
圆的半径:r
直径:d
圆周率:π(3.1415926……)
圆的性质:
1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
2、在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
3、如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
4、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等。
5、内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。