导航:首页 > 使用方法 > 系统频域特征的常用图形方法

系统频域特征的常用图形方法

发布时间:2022-08-22 05:32:53

⑴ 频域特性的频域分析


频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。
对信号进行时域分析时,有时一些信号的时域参数相同,但并不能说明信号就完全相同。因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。周期信号靠傅立叶级数,非周期信号靠傅立叶变换。 一个频域分析的简例可以通过图1:一个简单线性过程中小孩的玩具来加以说明。该线性系统包含一个用手柄安装的弹簧来悬挂的重物。小孩通过上下移动手柄来控制重物的位置。
任何玩过这种游戏的人都知道,如果或多或少以一种正弦波的方式来移动手柄,那么,重物也会以相同的频率开始振荡,尽管此时重物的振荡与手柄的移动并不同步。只有在弹簧无法充分伸长的情况下,重物与弹簧会同步运动且以相对较低的频率动作。
随着频率愈来愈高,重物振荡的相位可能更加超前于手柄的相位,也可能更加滞后。在过程对象的固有频率点上,重物振荡的高度将达到最高。过程对象的固有频率是由重物的质量及弹簧的强度系数来决定的。
当输入频率越来越大于过程对象的固有频率时,重物振荡的幅度将趋于减少,相位将更加滞后(换言之,重物振荡的幅度将越来越少,而其相位滞后将越来越大)。在极高频的情况下,重物仅仅轻微移动,而与手柄的运动方向恰恰相反。 所有的线性过程对象都表现出类似的特性。这些过程对象均将正弦波的输入转换为同频率的正弦波的输出,不同的是,输出与输入的振幅和相位有所改变。振幅和相位的变化量的大小取决于过程对象的相位滞后与增益大小。增益可以定义为“经由过程对象放大后,输出正弦波振幅与输入正弦波振幅之间的比例系数”,而相位滞后可以定义为“输出正弦波与输入正弦波相比较,输出信号滞后的度数”。
与稳态增益K值不同的是,“过程对象的增益和相位滞后”将依据于输入正弦波信号的频率而改变。在上例中,弹簧-重物对象不会大幅度的改变低频正弦波输入信号的振幅。这就是说,该对象仅有一个低频增益系数。当信号频率靠近过程对象的固有频率时,由于其输出信号的振幅要大于输入信号的振幅,因此,其增益系数要大于上述低频下的系数。而当上例中的玩具被快速摇动时,由于重物几乎无法起振,因此该过程对象的高频增益可以认为是零。
过程对象的相位滞后是一个例外的因素。由于当手柄移动得非常慢时,重物与手柄同步振荡,所以,在以上的例子中,相位滞后从接近于零的低频段输入信号就开始了。在高频输入信号时,相位滞后为“-180度”,也就是重物与手柄以相反的方向运动(因此,我们常常用‘滞后180度’来描述这类两者反向运动的状况)。
Bode图谱表现出弹簧-重物对象在0.01-100弧度/秒的频率范围内,系统增益与相位滞后的完整频谱图。这是Bode图谱的一个例子,该图谱是由贝尔实验室的Hendrick Bode于1940s年代发明的一种图形化的分析工具。利用该工具可以判断出,当以某一特定频率的正弦波输入信号来驱动过程对象时,其对应的输出信号的振动幅度和相位。欲获取输出信号的振幅,仅仅需要将输入信号的振幅乘以“Bode图中该频率对应的增益系数”。欲获取输出信号的相位,仅仅需要将输入信号的相位加上“Bode图中该频率对应的相位滞后值”。 在过程对象的Bode图中表现出来的增益系数和相位滞后值,反映了系统的非常确定的特征,对于一个有丰富经验的控制工程师而言,该图谱将其需要知道的、有关过程对象的一切特性都准确无误的告诉了他。由此,控制工程师运用此工具,不仅可以预测“系统未来对于正弦波的控制作用所产生的系统响应”,而且能够知道“系统对任何控制作用所产生的系统响应”。
傅立叶定理使得以上的分析成为可能,该定理表明任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。数学家傅立叶在1822年证明了这个着名的定理,并创造了为大家熟知的、被称之为傅立叶变换的算法,该算法利用直接测量到的原始信号,以累加方式来计算不同正弦波信号的频率、振幅和相位。
从理论上说,傅立叶变换和Bode图可以结合在一起使用,用以预测当线性过程对象受到控制作用的时序影响时产生的反应。详见以下:
1) 利用傅立叶变换这一数学方法,把提供给过程对象的控制作用,从理论上分解为不同的正弦波的信号组成或者频谱。
2) 利用Bode图可以判断出,每种正弦波信号在经由过程对象时发生了那些变化。换言之,在该图上可以找到正弦波在每种频率下的振幅和相位的改变。
3) 反之,利用反傅立叶变换这一方法,又可以将每个单独改变的正弦波信号转换成一个信号。
既然反傅立叶变换从本质上说,也是一种累加处理,那么过程对象的线性特征将会确保-“在第一步中计算得到的各种理论正弦波”所产生单独作用的集合,应该等效于“各不同正弦波的累加集合”共同产生的作用。因此,在第三步计算得到的总信号,将可以代表“当所提供的控制作用输入到过程对象时,过程对象的实际值”。
请注意,在以上这些步骤中,没有哪个点不是由画在图上的控制器产生的单独正弦波构成。所有这些频域方面的分析技术都是概念性的。这是一种方便的数学方法,运用傅立叶变换(或者紧密相关的拉普拉斯变换),将时域信号转换为频域信号,然后再用Bode图或其他一些频域分析工具来解决手头的一些问题,最后再用反傅立叶变换将频域信号转换为时域信号。
绝大多数可用此方法解决的控制设计问题,也可以在时域内通过直接的操控来解决,但是对于计算而言,利用频域的方法通常更简单一些。在上例中,就是用乘法和减法来计算过程实际值的频谱,而该过程实际值是通过对给定的控制作用进行傅立叶变换,尔后又对照Bode图分析而得到的。
将所有的正弦波进行正确的累加,就会产生如傅立叶变换所预示的那类形状的信号。当有时这一现象并不直观,举个例子可能有助于理解。
请再次想想上面那个例子中小孩的重物-弹簧玩具,操场上的跷跷板,以及位于外部海洋上的船。设想这艘船以频率为w和幅度为A的正弦波形式在海面上起起落落,我们同时再假设跷跷板也以频率为3w和幅度为A/3的正弦波形式在振荡,并且小孩以频率为5w和幅度为A/5的正弦波形式在摇动玩具。‘三张单独的正弦波波形图’已经显示出,如果我们将三个不同的正弦波运动进行分别观察的话,每个正弦波运动将会体现出的形式。
现在假设小孩坐在跷跷板上,而跷跷板又依次固定在轮船的甲板上。如果这三者单独的正弦波运动又恰巧排列正确的话,那么,玩具所表现出的总体运动就大约是一个方波-如图4:三者合成的正弦波显示的那样。
以上并非一个非常确切的实际例子,但是却明白无误的说明:基本频率正弦波、振幅为三分之一的三倍频率谐波、以及振幅为五分之一的五倍频率谐波,它们波形的相加总和大约等于频率为w、振幅为A的方波。甚至如果再加上振幅为七分之一的七倍频率谐波、以及振幅为九分之一的九倍频率谐波时,总波形会更像方波。其实,傅立叶定理早已说明,当不同频率的正弦波以无穷级数的方式无限累加时,那么由此产生的总叠加信号就是一个严格意义上的、幅度为A的方波。傅立叶定理也可以用来将非周期信号分解成正弦波信号的无限叠加。
通过求解微分方程分析时域性能是十分有用的,但对于比较复杂的系统这种办法就比较麻烦。因为微分方程的求解计算工作量将随着微分方程阶数的增加而增大。另外,当方程已经求解而系统的响应不能满足技术要求时,也不容易确定应该如何调整系统来获得预期结果。从工程角度来看,希望找出一种方法,使之不必求解微分方程就可以预示出系统的性能。同时,又能指出如何调整系统性能技术指标。频域分析法具有上述特点,是研究控制系统的一种经典方法,是在频域内应用图解分析法评价系统性能的一种工程方法。该方法是以输入信号的频率为变量,对系统的性能在频率域内进行研究的一种方法。频率特性可以由微分方程或传递函数求得,还可以用实验方法测定.频域分析法不必直接求解系统的微分方程,而是间接地揭示系统的时域性能,它能方便的显示出系统参数对系统性能的影响,并可以进一步指明如何设计校正.这种分析法有利于系统设计,能够估计到影响系统性能的频率范围。特别地,当系统中存在难以用数学模型描述的某些元部件时,可用实验方法求出系统的频率特性,从而对系统和元件进行准确而有效的分析。

⑵ 频率特性的求取主要有哪三种方法

频率特性的求取主要有以下三种方法:

一、依据频率特性的定义求取系统的频率特性;

二、由传递函数直接令s=jw求取系统频率特性;

三、用试验方法求取系统频率特性。

具体解释为:

一、已知系统微分方程,可将正弦函数代入,求系统输出的稳态解,输出变量稳态解与输入正弦函数的复数比即为系统的频率特性。

二、已知系统传递函数G(s),可将传递函数中的“s”代之以“jw”,即可得系统频率特性G(jw)。

三、通过实验的手段求取。对实验的线性定常系统输入正弦信号,不断改变输入信号的角频率,并得到对应的一系列输出的稳态振幅和相角,分别将它们与相应的输入正弦信号的幅值相比、相角相减,便得到频率特性。

扩展阅读:

频率特性的定义:

谐波输入下,输出响应中与输入同频率的谐波分量与谐波输入的幅值之比A(ω)为幅频特性,相位之差φ(ω)为相频特性,并称其指数表达形式为系统的频率特性。

稳定系统的频率特性等于输出和输入的傅氏变换之比,而这正是频率特性在自控原理中的物理意义。

对于稳定的线性定常系统,由谐波输入产生的输出稳态分量仍然是与输入同频率的谐波函数,而幅值和相位的变化是频率ω的函数,且与系统数学模型相关。稳定系统的频率特性可以用实验方法确定,即在系统输入端加上不同频率的正弦信号,然后测量系统输出的稳态响应,再根据幅频特性和相频特性作出系统的频率特性曲线。

对于不稳定的系统,输出响应稳态分量中含有由系统传递函数的不稳定极点产生的呈发散[2]或振荡的分量,所以不稳定系统的频率特性不能通过实验法确定。

频率特性的应用

在自控原理中,和传递函数与微分方程一样,频率特性是系统数学模型的一种表达形式,它表征了系统的运动规律,成为系统频域分析的理论依据。

在线性系统的频域分析法中,系统的频率特性是不可缺少的重要工具,控制系统及其元部件的频率特性可以运用分析法和实验方法获得,并可用多种形式的曲线表示,因而系统分析和控制器设计可以应用图解法进行。可对系统的各个环节的频率特性进行分析从而对整个系统的频域及稳定性进行有效的分析和设计。

⑶ 检测信号的时域分析方法哪些 频域分析方法有哪些(常用的) (*^__^*)

检测信号的时域分析方法有拉普拉斯变换,频域分析方法有图形分析法,参考《机械工程测量与实验技术》黄长艺主编,还有《线性控制理论》,希望对你有帮助!谢谢!

什么是线性定常 系统的频率特性 并给出4中图形表示的方法

线性定常系统 (又称之为线性时不变系统) 特性不随时间改变的线性系统。它是定常系统的特例,但只要在所考察的范围内定常系统的非线性对系统运动的变化过程影响不大,那么这个定常系统就可看作是线性定常系统。对于线性定常系统,不管输入在哪一时刻加入,只要输入的波形是一样的,则系统输出响应的波形也总是同样的。线性定常系统的分析和设计均比时变系统或非线性系统容易得多,是自动控制理论中最成熟的部分。

⑸ 频域分析方法有哪些

频域分析法用时域分析法分析和研究系统的动态特性和稳态误差最为直观和准确,但是,用解析方法求解高阶系统的时域响应往往十分困难.此外,由于高阶系统的结构和参数与系统动态性能之间没有明确的函数关系,因此不易看出系统参数变化对系统动态性能的影响.当系统的动态性能不能满足生产上要求的性能指标时,很难提出改善系统性能的途径.

⑹ 频率特性分析方法适用于哪些系统

频率特性分析(又叫做频域分析法)方法的应用:

1、在线性系统的频域分析法中,系统的频率特性是不可缺少的重要工具,控制系统及其元部件的频率特性可以运用分析法和实验方法获得,并可用多种形式的曲线表示,因而系统分析和控制器设计可以应用图解法进行。可对系统的各个环节的频率特性进行分析从而对整个系统的频域及稳定性进行有效的分析和设计。

2、在自控原理系统中,和传递函数与微分方程一样,频率特性是系统数学模型的一种表达形式,它表征了系统的运动规律,成为系统频域分析的理论依据。

(6)系统频域特征的常用图形方法扩展阅读:

频域分析法的优势主要体现在:

1、频率特性虽然是一种稳态特性,但它不仅仅反映系统的稳态性能,还可以用来研究系统的稳定性和瞬态性能,而且不必解出特征方程的根。

2、频率特性与二阶系统的过渡过程性能指标有着确定的对应关系,从而可以较方便地分析系统中参量对系统瞬态响应的影响。

3、线性系统的频率特性可以非常容易地由解析法得到。

4、许多元件和稳定系统的频率特性都可用实验的方法来测定,这对于很难从分析其物理规律着手来列写动态方程的元件和系统来说,具有特别重要的意义。

5、频域分析法不仅适用于线性系统,也可以推广到某些非线性系统的分析研究中。

阅读全文

与系统频域特征的常用图形方法相关的资料

热点内容
18种科学锻炼方法 浏览:433
如何克服心理的方式方法 浏览:812
物理研究方法一共有几种 浏览:387
用什么方法可以把手机变成蓝牙 浏览:484
想把真皮斑淡化有什么土方法 浏览:514
恩苹果手机短信归类处理方法 浏览:942
工程图纸问题及解决方法 浏览:542
s6蓝牙耳机使用方法 浏览:974
训犬的方法如何训练马犬 浏览:101
一个人能快速学会下腰的方法 浏览:780
篮球比赛技巧与方法视频 浏览:858
循环水真空泵使用方法 浏览:570
vivo屏幕旋转按钮在哪里设置方法 浏览:450
结核杆菌快速检测方法有 浏览:659
科目二五项操作技巧方法详细初学 浏览:202
关节炎有什么土方法 浏览:228
散称商品正确的书写方法图片 浏览:833
细菌无性繁殖计算方法 浏览:291
t恤衫改造方法视频 浏览:840
淘宝常用电脑设置方法 浏览:368