⑴ 高中立体几何证明定理有哪些
一.直线与平面平行的(判定)
1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.
2.应用:反证法(证明直线不平行于平面)
二.平面与平面平行的(判定)
1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行
2.关键:判定两个平面是否有公共点
三.直线与平面平行的(性质)
1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行 2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线
四.平面与平面平行的(性质)
1.性质:如果两个平行平面同时和第三个平面相交,那么他们的交线平行
2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行
五:直线与平面垂直的(定理)
1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直)
六.平面与平面的垂直(定理)
1.一个平面过另一个平面的垂线,则这两个平面垂直
(或者做二面角判定)
2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换
七.平面与平面垂直的(性质)
1.性质一:垂直于同一个平面的两条垂线平行
2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
3.性质三:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记)
以上,是立体几何的定理和性质整理.是一定要记住的基本!
⑵ 解高中立体几何的方法
1,平面外直线和平面内的一条直线平行由平面外直线平行于这个平面.这是由线线平行到线面平行
2,一条直线平行于一个平面,过这条直线的平面和已知平面相交,则这条直线平行于两个平面的交线,这是线面平行到线线平行
3,一个平面内的两条相交直线分别和另一个平面平行,则这两个平面平行,这是线面平行到面面平行
4,两个平面平行,第三个平面和它们相交,则交线平行,这是面面平行到线面平行
在具体运用中可根据题设条件进行相互转化.
5,一条直线和平面内的两条相交直线都垂直,则这条直线和这个平面垂直.这是由线线垂直到线面垂直
6,一条直线和一个平面垂直,则这条直线和这个平面内的所有直线都垂直,这是由线面垂直到线线垂直
7,一条直线和一个平面垂直,则经过这条直线和平面和已知平面垂直,这是由线面垂直到面面垂直
8,两个平面互相垂直,其中一个平面内的一条直线垂直于交线,则这条直线垂直于另一个平面,这是由面面垂直到线面垂直,也到线线垂直,这一条包含了两条,即由面面垂直到线面垂直,也由面面垂直到线线垂直.
在应用时,平行和垂直的判定定和性质定理要结合起来,才能在做题时灵活转化.
⑶ 立体几何证明过程最常用到的定理
投影定理:
若垂直相交的两直线中有一条直线平行于某一投影面时,则两直线在该投影面上的投影仍然相互垂直;反之,若相交两直线在某一投影面上的投影互相垂直,且其中一直线平行于该投影面时,则两直线在空间也一定相互垂直。
面面垂直:
两个面中的两条与两个面交线垂直的线,相互垂直
下面是解立体几何一些简单的公式定例:
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
(1)判定直线在平面内的依据
(2)判定点在平面内的方法
公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 。
(1)判定两个平面相交的依据
(2)判定若干个点在两个相交平面的交线上
公理3:经过不在一条直线上的三点,有且只有一个平面。 (1)确定一个平面的依据
(2)判定若干个点共面的依据
推论1:经过一条直线和这条直线外一点,有且仅有一个平面。 (1)判定若干条直线共面的依据
(2)判断若干个平面重合的依据
(3)判断几何图形是平面图形的依据
推论2:经过两条相交直线,有且仅有一个平面。
推论3:经过两条平行线,有且仅有一个平面。
立体几何 直线与平面
空 间 二 直 线 平行直线
公理4:平行于同一直线的两条直线互相平行
等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。
异面直线
空 间 直 线 和 平 面 位 置 关 系
(1)直线在平面内——有无数个公共点
(2)直线和平面相交——有且只有一个公共点
(3)直线和平面平行——没有公共点
立体几何 直线与平面
直线与平面所成的角
(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角
(2)一条直线垂直于平面,定义这直线与平面所成的角是直角
(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是0度的角
三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直
三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直
空间两个平面 两个平面平行 判定
性质
(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行
(2)垂直于同一直线的两个平面平行
(1)两个平面平行,其中一个平面内的直线必平行于另一个平面
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行
(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面
相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面
二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角
平面角是直角的二面角叫做直二面角
两平面垂直 判定
性质
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面
(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内
立体几何 多面体、棱柱、棱锥
多面体
定义 由若干个多边形所围成的几何体叫做多面体。
棱柱 斜棱柱:侧棱不垂直于底面的棱柱。
直棱柱:侧棱与底面垂直的棱柱。
正棱柱:底面是正多边形的直棱柱。
棱锥 正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。
球
到一定点距离等于定长或小于定长的点的集合。
欧拉定理
简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2
⑷ 做立体几何题的方法 规律和技巧
我也是高考生让我来帮助你吧…立体几何在高中数学里不是很难的,只是大脑里多想想体积的东西,一定要熟练的背诵定理,先由课本联系为主,等书上的题没问题之后就开始做些课外练习题,世纪金榜这本书不错的,遇到不会的题要去问老师的,对于学习没有捷径的。
⑸ 高中常见立体几何证明的方法
一.直线与平面平行的(判定)
1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.
2.应用:反证法(证明直线不平行于平面)
二.平面与平面平行的(判定)
1. 判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行
2.关键:判定两个平面是否有公共点
三.直线与平面平行的(性质)
1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行 2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线
四.平面与平面平行的(性质)
1.性质:如果两个平行平面同时和第三个平面相交,那么他们的交线平行
2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行
五:直线与平面垂直的(定理)
1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直)
六.平面与平面的垂直(定理)
1.一个平面过另一个平面的垂线,则这两个平面垂直
(或者做二面角判定)
2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换
七.平面与平面垂直的(性质)
1.性质一:垂直于同一个平面的两条垂线平行
2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
3.性质三:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记)
以上,是立体几何的定理和性质整理.是一定要记住的基本!!
(这是我自己整理的笔记,希望可以采纳我的。。)
⑹ 立体几何常用证明定理 高中的。
有六种:
1.定义法。
2.垂面法。
3.射影定理。
4.三垂线定理。
5.向量法。
6.转化法。
(6)立体几何大题证明常用方法扩展阅读:
三垂线定理:
在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
1、三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系。
2、a与PO可以相交,也可以异面。
3、三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
关于三垂线定理的应用,关键是找出平面(基准面)的垂线。至于射影则是由垂足,斜足来确定的,因而是第二位的。从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证。即几何模型
第一,找平面(基准面)及平面垂线;
第二,找射影线,这时a,b便成平面上的一条直线与一条斜线;
第三,证明射影线与直线a垂直,从而得出a与b垂直。
1.定理中四条线均针对同一平面而言;
2.应用定理关键是找"基准面"这个参照系。
用向量证明三垂线定理。
1.已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b垂直OA,求证:b垂直PA
证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA)
所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以 b) 加 (向量OA 乘以 b )=O,
所以PA垂直b。
2.已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b垂直PA,求证:b垂直OA
证明:因为PO垂直a,所以PO垂直b,又因为PA垂直b, 向量OA=(向量PA-向量PO)
所以向量OA乘以b==(向量PA-向量PO)乘以b=(向量PA 乘以 b )减 (向量PO 乘以 b )=0,
所以OA垂直b。
3.已知三个平面OAB,OBC,OAC相交于一点O,角AOB=角BOC=角COA=60度,求交线OA于平面OBC所成的角。
向量OA=(向量OB+向量AB),O是内心,又因为AB=BC=CA,所以OA于平面OBC所成的角是30度。
⑺ 怎么能快速弄会高中立体几何证明题
没有捷径可走。只有多做题。但是我可以给你一个我自己的方法。只要是立体几何,必然可以建立空间坐标系,依照题目的要求,设立坐标。打个比方,如果证明平行,那就计算两条线的方程斜率一样。这个方法可以解绝大多数立体几何题,优点是易于上手,缺点是需要计算,但是不要怕计算,只要空间坐标系建立的合理,坐标取值准确,计算的数值很小。
⑻ 怎么证明立体几何!该如何表达好多定理我都忘记了。
立体几何在历年的高考中有两到三道小题,必有一道大题。虽然分值比重不是特别大,但是起着举足轻重的作用。下面就如何学好立体几何谈几点建议。
一 立足课本,夯实基础
直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:
(1) 深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
(2) 培养空间想象力。
(3) 得出一些解题方面的启示。
在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。
二 培养空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
三 逐渐提高逻辑论证能力
立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出
四 “转化”思想的应用
我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
1. 两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
2. 异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
3. 面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
4. 三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。
以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。
五 总结规律,规范训练
立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。
还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
六 典型结论的应用
在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。
我相信,如果在学习过程中做到了以上六点,那么任何题目也会迎刃而解。第一:要建立空间观念,提高空间想象力。
从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。
此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。
第二:要学好《立体几何》的基础知识和基本技能。
要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法———分析法、综合法、反证法。
第三要不断提高各方面能力。
通过联系实际、观察模型或类比平面几何的结论来提出命题;对于提出的命题,不要轻易肯定或否定它,要多用几个特例进行检验,最好做到否定举出反面例子,肯定给出证明。欧拉公式的内容是以研究性课题的形式给出的,要从中体验创造数学知识。要不断地将所学的内容结构化、系统化。所谓结构化,是指从整体到局部、从高层到低层来认识、组织所学知识,并领会其中隐含的思想、方法。所谓系统化,是指将同类问题如平行的问题、垂直的问题、角的问题、距离的问题、惟一性的问题集中起来,比较它们的异同,形成对它们的整体认识。牢固地把握一些能统摄全局、组织整体的概念,用这些概念统摄早先偶尔接触过的或是未察觉出明显关系的已知知识间的联系,提高整体观念。要注意积累解决问题的策略。如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。要不断提高分析问题、解决问题的水平:一方面从已知到未知,另方面从未知到已知,寻求正反两个方面的知识衔接点———一个固有的或确定的数学关系。
要不断提高反省认知水平,积极反思自己的学习活动,从经验上升到自动化,从感性上升到理性,加深对理论的认识水平,提高解决问题的能力和创造性。
材料来源于网络,希望对你有所帮助,网络知道祝你生活学习愉快,谢谢!!!