导航:首页 > 使用方法 > 机器学习方法最常用三种类型

机器学习方法最常用三种类型

发布时间:2022-07-28 03:46:24

Ⅰ 机器学习算法有哪些最常用是哪些几种有什么优点

楼主肯定对机器学习了解不多才会提这种问题。这问题专业程度看起来和“机器学习工程师”这词汇一样。
机器学习,基础的PCA模型理论,贝叶斯,boost,Adaboost,
模式识别中的各种特征,诸如Hog,Haar,SIFT等
深度学习里的DBN,CNN,BP,RBM等等。
非专业出身,只是略懂一点。

没有常用的,只是针对需求有具体的设计,或者需要自己全新设计一个合适的算法,现在最热门的算是CNN(convolutional neural networks)卷积神经网络了。
优点:不需要训练获取特征,在学习过程中自动提取图像中的特征,免去了常规方法中,大量训练样本的时间。在样本足够大的情况下,能够得到非常精确的识别结果。一般都能95%+的正确率。
缺点:硬件要求高,CUDA的并行框架算是用的很火的了。但是一般的台式机跑一个Demo花费的时间长资源占用高。不过这也是这块算法的通病。

Ⅱ 机器学习中常用的方法有什么

机器学习中常用的方法有LR,SVM,集成学习,贝叶斯

Ⅲ 经典的机器学习方法

机器学习:一种实现人工智能的方法

机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

举个简单的例子,当我们浏览网上商城时,经常会出现商品推荐的信息。这是商城根据你往期的购物记录和冗长的收藏清单,识别出这其中哪些是你真正感兴趣,并且愿意购买的产品。这样的决策模型,可以帮助商城为客户提供建议并鼓励产品消费。

传统的机器学习算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。这篇文章将对常用算法做常识性的介绍,没有代码,也没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的。

决策树

根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

Ⅳ 如何理解机器学习

每天都在看这些故事和文章。和大家聊聊。机器学习机器学习,网络机器学习也在努力。


机器学习(MachineLearning),在我看来就是让机器学习人思维的过程。机器学习的宗旨就是让机器学会“人识别事物的方法”,我们希望人从事物中了解到的东西和机器从事物中了解到的东西一样,这就是机器学习的过程。在机器学习中有一个很经典的问题:
“假设有一张色彩丰富的油画,画中画了一片茂密的森林,在森林远处的一棵歪脖树上,有一只猴子坐在树上吃东西。如果我们让一个人找出猴子的位置,正常情况下不到一秒钟就可以指出猴子,甚至有的人第一眼就能看到那只猴子。”


·························



从根本上说,识别,是一个分类的结果。看到四条腿的生物,我们可能会立即把该生物归为动物一类,因为我们常常见到的四条腿的、活的东西,九成以上是动物。这里,就牵扯出了概率的问题。我们对身边的事物往往识别率很高,是因为人的潜意识几乎记录了肉眼看到的事物的所有特征。比如,我们进入一个新的集体,刚开始大家都不认识,有的时候人和名字都对不上号,主要原因就是我们对事物的特征把握不够,还不能通过现有特征对身边的人进行分类。这个时候,我们常常会有这种意识:哎,你好像叫张三来着?哦,不对,你好像是李四。这就是分类中的概率问题,有可能是A结果,有可能是B结果,甚至是更多结果,主要原因就是我们的大脑收集的特征不够多,还无法进行准确分类。当大家都彼此熟悉了之后,一眼就能识别出谁是谁来,甚至极端情况下,只听声音不见人都能进行识别,这说明我们已经对该事物的特征把握相当精确。
所以,我认为,人识别事物有四个基本步骤:学习、提取特征、识别、分类。
那么机器可不可以模仿这个过程来实现识别呢?答案是肯定的,但是没有那么容易。难题有三:第一,人的大脑有无数神经元进行数据交换和处理,在目前的机器中还达不到同等的处理条件;第二,人对事物特征的提取是潜意识的,提取无意识情况下的信息,误差很大;第三,也是最重要的一点,人的经验来自于人每时每刻的生活中,也就是人无时无刻都处在学习中,如何让机器进行各个方面的自主学习?因此,目前在人工智能领域始终还没达到类人的水平,我认为主要原因就是机器没有潜意识。人的潜意识其实并不完全受人的意识支配,但却可以提高人类识别事物的概率。我们无法给机器加载潜意识,因为主动加载的意识就是主观意识,在机器里无法完成人类潜意识的功能。所以,以目前的发展情况来看,要达到完全类人,还有不短的时间。但即便如此,与人的思维差别很大的机器依然可以为我们的生活带来帮助。比如,我们常用的在线翻译、搜索系统、专家系统等,都是机器学习的产物。
那么,如何实现机器学习呢?


整体上看,机器学习就是模仿人识别事物的过程,即:学习、提取特征、识别、分类。由于机器不能跟人类思维一样根据事物特征自然而然的选择分类方法,所以机器学习方法的选择依然还需要人工选择。目前,机器学习的方法主要有三种:监督学习、半监督学习和无监督学习。监督学习是利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程。白话一点,就是根据已知的,推断未知的。代表方法有:Nave Bayes、SVM、决策树、KNN、神经网络以及Logistic分析等;半监督方法主要考虑如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题,也就是根据少量已知的和大量未知的内容进行分类。代表方法有:最大期望、生成模型和图算法等。无监督学习是利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程。也就是及其自个儿学。代表方法有:Apriori、FP树、K-means以及目前比较火的Deep Learning。从这三方面看,无监督学习是最智能的,有能实现机器主动意识的潜质,但发展还比较缓慢;监督学习是不太靠谱的,从已知的推断未知的,就必须要把事物所有可能性全都学到,这在现实中是不可能的,人也做不到;半监督学习是“没办法中的办法”,既然无监督学习很难,监督学习不靠谱,就取个折中,各取所长。目前的发展是,监督学习技术已然成熟,无监督学习还在起步,所以对监督学习方法进行修改实现半监督学习是目前的主流。但这些方法基本只能提取信息,还不能进行有效的预测(人们就想,既然没法得到更多,就先看看手里有什么,于是数据挖掘出现了)。


网络机器学习也在努力。希望2017可以更牛~~~~~~~

Ⅳ 机器学习有几种算法

1. 线性回归

工作原理:该算法可以按其权重可视化。但问题是,当你无法真正衡量它时,必须通过观察其高度和宽度来做一些猜测。通过这种可视化的分析,可以获取一个结果。

2. 逻辑回归

根据一组独立变量,估计离散值。它通过将数据匹配到logit函数来帮助预测事件。

3. 决策树

利用监督学习算法对问题进行分类。决策树是一种支持工具,它使用树状图来决定决策或可能的后果、机会事件结果、资源成本和实用程序。根据独立变量,将其划分为两个或多个同构集。

4. 支持向量机(SVM)

基本原理(以二维数据为例):如果训练数据是分布在二维平面上的点,它们按照其分类聚集在不同的区域。基于分类边界的分类算法的目标是,通过训练,找到这些分类之间的边界(直线的――称为线性划分,曲线的――称为非线性划分)。对于多维数据(如N维),可以将它们视为N维空间中的点,而分类边界就是N维空间中的面,称为超面(超面比N维空间少一维)。线性分类器使用超平面类型的边界,非线性分类器使用超曲面。

5. 朴素贝叶斯

朴素贝叶斯认为每个特征都是独立于另一个特征的。即使在计算结果的概率时,它也会考虑每一个单独的关系。

它不仅易于使用,而且能有效地使用大量的数据集,甚至超过了高度复杂的分类系统。

6. KNN(K -最近邻)

该算法适用于分类和回归问题。在数据科学行业中,它更常用来解决分类问题。

这个简单的算法能够存储所有可用的案例,并通过对其k近邻的多数投票来对任何新事件进行分类。然后将事件分配给与之匹配最多的类。一个距离函数执行这个测量过程。

7. k – 均值

这种无监督算法用于解决聚类问题。数据集以这样一种方式列在一个特定数量的集群中:所有数据点都是同质的,并且与其他集群中的数据是异构的。

8. 随机森林

利用多棵决策树对样本进行训练并预测的一种分类器被称为随机森林。为了根据其特性来分类一个新对象,每棵决策树都被排序和分类,然后决策树投票给一个特定的类,那些拥有最多选票的被森林所选择。

9. 降维算法

在存储和分析大量数据时,识别多个模式和变量是具有挑战性的。维数简化算法,如决策树、因子分析、缺失值比、随机森林等,有助于寻找相关数据。

10. 梯度提高和算法

这些算法是在处理大量数据,以作出准确和快速的预测时使用的boosting算法。boosting是一种组合学习算法,它结合了几种基本估计量的预测能力,以提高效力和功率。

综上所述,它将所有弱或平均预测因子组合成一个强预测器。

Ⅵ 机器学习有哪些算法

朴素贝叶斯分类器算法是最受欢迎的学习方法之一,按照相似性分类,用流行的贝叶斯概率定理来建立机器学习模型,特别是用于疾病预测和文档分类。 它是基于贝叶斯概率定理的单词的内容的主观分析的简单分类。

什么时候使用机器学习算法 - 朴素贝叶斯分类器?

(1)如果您有一个中等或大的训练数据集。

(2)如果实例具有几个属性。

(3)给定分类参数,描述实例的属性应该是条件独立的。

A.朴素贝叶斯分类器的应用

(1)这些机器学习算法有助于在不确定性下作出决策,并帮助您改善沟通,因为他们提供了决策情况的可视化表示。

(2)决策树机器学习算法帮助数据科学家捕获这样的想法:如果采取了不同的决策,那么情境或模型的操作性质将如何剧烈变化。

(3)决策树算法通过允许数据科学家遍历前向和后向计算路径来帮助做出最佳决策。

C.何时使用决策树机器学习算法

(1)决策树对错误是鲁棒的,并且如果训练数据包含错误,则决策树算法将最适合于解决这样的问题。

(2)决策树最适合于实例由属性值对表示的问题。

(3)如果训练数据具有缺失值,则可以使用决策树,因为它们可以通过查看其他列中的数据来很好地处理丢失的值。

(4)当目标函数具有离散输出值时,决策树是最适合的。

D.决策树的优点

(1)决策树是非常本能的,可以向任何人轻松解释。来自非技术背景的人,也可以解释从决策树绘制的假设,因为他们是不言自明的。

(2)当使用决策树机器学习算法时,数据类型不是约束,因为它们可以处理分类和数值变量。

(3)决策树机器学习算法不需要对数据中的线性进行任何假设,因此可以在参数非线性相关的情况下使用。这些机器学习算法不对分类器结构和空间分布做出任何假设。

(4)这些算法在数据探索中是有用的。决策树隐式执行特征选择,这在预测分析中非常重要。当决策树适合于训练数据集时,在其上分割决策树的顶部的节点被认为是给定数据集内的重要变量,并且默认情况下完成特征选择。

(5)决策树有助于节省数据准备时间,因为它们对缺失值和异常值不敏感。缺少值不会阻止您拆分构建决策树的数据。离群值也不会影响决策树,因为基于分裂范围内的一些样本而不是准确的绝对值发生数据分裂。

E.决策树的缺点

(1)树中决策的数量越多,任何预期结果的准确性越小。

(2)决策树机器学习算法的主要缺点是结果可能基于预期。当实时做出决策时,收益和产生的结果可能与预期或计划不同。有机会,这可能导致不现实的决策树导致错误的决策。任何不合理的期望可能导致决策树分析中的重大错误和缺陷,因为并不总是可能计划从决策可能产生的所有可能性。

(3)决策树不适合连续变量,并导致不稳定性和分类高原。

(4)与其他决策模型相比,决策树很容易使用,但是创建包含几个分支的大决策树是一个复杂和耗时的任务。

(5)决策树机器学习算法一次只考虑一个属性,并且可能不是最适合于决策空间中的实际数据。

(6)具有多个分支的大尺寸决策树是不可理解的,并且造成若干呈现困难。

F.决策树机器学习算法的应用

(1)决策树是流行的机器学习算法之一,它在财务中对期权定价有很大的用处。

(2)遥感是基于决策树的模式识别的应用领域。

(3)银行使用决策树算法按贷款申请人违约付款的概率对其进行分类。

(4)Gerber产品公司,一个流行的婴儿产品公司,使用决策树机器学习算法来决定他们是否应继续使用塑料PVC(聚氯乙烯)在他们的产品。

(5)Rush大学医学中心开发了一个名为Guardian的工具,它使用决策树机器学习算法来识别有风险的患者和疾病趋势。

Python语言中的数据科学库实现决策树机器学习算法是 - SciPy和Sci-Kit学习。

R语言中的数据科学库实现决策树机器学习算法是插入符号。

3.7 随机森林机器学习算法

让我们继续我们在决策树中使用的同样的例子,来解释随机森林机器学习算法如何工作。提利昂是您的餐厅偏好的决策树。然而,提利昂作为一个人并不总是准确地推广你的餐厅偏好。要获得更准确的餐厅推荐,你问一对夫妇的朋友,并决定访问餐厅R,如果大多数人说你会喜欢它。而不是只是问Tyrion,你想问问Jon Snow,Sandor,Bronn和Bran谁投票决定你是否喜欢餐厅R或不。这意味着您已经构建了决策树的合奏分类器 - 也称为森林。

你不想让所有的朋友给你相同的答案 - 所以你提供每个朋友略有不同的数据。你也不确定你的餐厅偏好,是在一个困境。你告诉提利昂你喜欢开顶屋顶餐厅,但也许,只是因为它是在夏天,当你访问的餐厅,你可能已经喜欢它。在寒冷的冬天,你可能不是餐厅的粉丝。因此,所有的朋友不应该利用你喜欢打开的屋顶餐厅的数据点,以提出他们的建议您的餐厅偏好。

通过为您的朋友提供略微不同的餐厅偏好数据,您可以让您的朋友在不同时间向您询问不同的问题。在这种情况下,只是稍微改变你的餐厅偏好,你是注入随机性在模型级别(不同于决策树情况下的数据级别的随机性)。您的朋友群现在形成了您的餐厅偏好的随机森林。

随机森林是一种机器学习算法,它使用装袋方法来创建一堆随机数据子集的决策树。模型在数据集的随机样本上进行多次训练,以从随机森林算法中获得良好的预测性能。在该整体学习方法中,将随机森林中所有决策树的输出结合起来进行最终预测。随机森林算法的最终预测通过轮询每个决策树的结果或者仅仅通过使用在决策树中出现最多次的预测来导出。

例如,在上面的例子 - 如果5个朋友决定你会喜欢餐厅R,但只有2个朋友决定你不会喜欢的餐厅,然后最后的预测是,你会喜欢餐厅R多数总是胜利。

A.为什么使用随机森林机器学习算法?

(1)有很多好的开源,在Python和R中可用的算法的自由实现。

(2)它在缺少数据时保持准确性,并且还能抵抗异常值。

(3)简单的使用作为基本的随机森林算法可以实现只用几行代码。

(4)随机森林机器学习算法帮助数据科学家节省数据准备时间,因为它们不需要任何输入准备,并且能够处理数字,二进制和分类特征,而无需缩放,变换或修改。

(5)隐式特征选择,因为它给出了什么变量在分类中是重要的估计。

B.使用随机森林机器学习算法的优点

(1)与决策树机器学习算法不同,过拟合对随机森林不是一个问题。没有必要修剪随机森林。

(2)这些算法很快,但不是在所有情况下。随机森林算法当在具有100个变量的数据集的800MHz机器上运行时,并且50,000个案例在11分钟内产生100个决策树。

(3)随机森林是用于各种分类和回归任务的最有效和通用的机器学习算法之一,因为它们对噪声更加鲁棒。

(4)很难建立一个坏的随机森林。在随机森林机器学习算法的实现中,容易确定使用哪些参数,因为它们对用于运行算法的参数不敏感。一个人可以轻松地建立一个体面的模型没有太多的调整

(5)随机森林机器学习算法可以并行生长。

(6)此算法在大型数据库上高效运行。

(7)具有较高的分类精度。

C.使用随机森林机器学习算法的缺点

他们可能很容易使用,但从理论上分析它们是很困难的。

随机森林中大量的决策树可以减慢算法进行实时预测。

如果数据由具有不同级别数量的分类变量组成,则算法会偏好具有更多级别的那些属性。 在这种情况下,可变重要性分数似乎不可靠。

当使用RandomForest算法进行回归任务时,它不会超出训练数据中响应值的范围。

D.随机森林机器学习算法的应用

(1)随机森林算法被银行用来预测贷款申请人是否可能是高风险。

(2)它们用于汽车工业中以预测机械部件的故障或故障。

(3)这些算法用于医疗保健行业以预测患者是否可能发展成慢性疾病。

(4)它们还可用于回归任务,如预测社交媒体份额和绩效分数的平均数。

(5)最近,该算法也已经被用于预测语音识别软件中的模式并对图像和文本进行分类。

Python语言中的数据科学库实现随机森林机器学习算法是Sci-Kit学习。

R语言的数据科学库实现随机森林机器学习算法randomForest。

Ⅶ 机器学习按综合分类法进行分类的方法

机器学习按综合分类法进行分类的方法:朴素贝叶斯 , 逻辑回归 , 决策树 , 支持向量机。

不过他们的共同点是:都是data-driven的模型,都是学习一种更加abstract的方式来表达特定的数据,假设和模型都对特定数据广泛适用。好处是,这种学习出来的表达方式可以帮助我们更好的理解和分析数据,挖掘数据隐藏的结构和关系。

机器学习辅助数据对象:

辅助数据对象也是系统服务对象,主要任务是反映和记录系统中所使用的基础数据和常用不变的数据,根据实际需要可以增加必要的数据对象,下面列出几个常用的辅助数据对象。

(1)设施设备。设备对象是指与监理业务相关并且可用的设施设备实体,其属性有:设备编号、设备名称、功能说明、规格型号、库存数量、购置日期、设备单价、计量单位、备注说明等。

(2)往来单位。往来单位对象是指与建设工程、监理业务相关的实体,其属性有:单位编号、单位名称、单位地址、单位类型、联系人员、负责人、联系电话、备注说明等。

Ⅷ 什么是机器学习

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

Ⅸ 机器学习的类型有哪些

基于学习策略的分类

学习策略是指学习过程中系统所采用的推理策略。一个学习系统总是由学习和环境两部分组成。由环境(如书本或教师)提供信息,学习部分则实现信息转换,用能够理解的形式记忆下来,并从中获取有用的信息。在学习过程中,学生(学习部分)使用的推理越少,他对教师(环境)的依赖就越大,教师的负担也就越重。学习策略的分类标准就是根据学生实现信息转换所需的推理多少和难易程度来分类的,依从简单到复杂,从少到多的次序分为以下六种基本类型:

1)机械学习 (Rote learning)

学习者无需任何推理或其它的知识转换,直接吸取环境所提供的信息。如塞缪尔的跳棋程序,纽厄尔和西蒙的LT系统。这类学习系统主要考虑的是如何索引存贮的知识并加以利用。系统的学习方法是直接通过事先编好、构造好的程序来学习,学习者不作任何工作,或者是通过直接接收既定的事实和数据进行学习,对输入信息不作任何的推理。

2)示教学习 (Learning from instruction或Learning by being told)

学生从环境(教师或其它信息源如教科书等)获取信息,把知识转换成内部可使用的表示形式,并将新的知识和原有知识有机地结合为一体。所以要求学生有一定程度的推理能力,但环境仍要做大量的工作。教师以某种形式提出和组织知识,以使学生拥有的知识可以不断地增加。这种学习方法和人类社会的学校教学方式相似,学习的任务就是建立一个系统,使它能接受教导和建议,并有效地存贮和应用学到的知识。不少专家系统在建立知识库时使用这种方法去实现知识获取。示教学习的一个典型应用例是FOO程序。

3)演绎学习 (Learning by dection)

学生所用的推理形式为演绎推理。推理从公理出发,经过逻辑变换推导出结论。这种推理是"保真"变换和特化(specialization)的过程,使学生在推理过程中可以获取有用的知识。这种学习方法包含宏操作(macro-operation)学习、知识编辑和组块(Chunking)技术。演绎推理的逆过程是归纳推理。

4)类比学习 (Learning by analogy)

利用二个不同领域(源域、目标域)中的知识相似性,可以通过类比,从源域的知识(包括相似的特征和其它性质)推导出目标域的相应知识,从而实现学习。类比学习系统可以使一个已有的计算机应用系统转变为适应于新的领域,来完成原先没有设计的相类似的功能。

类比学习需要比上述三种学习方式更多的推理。它一般要求先从知识源(源域)中检索出可用的知识,再将其转换成新的形式,用到新的状况(目标域)中去。类比学习在人类科学技术发展史上起着重要作用,许多科学发现就是通过类比得到的。例如着名的卢瑟福类比就是通过将原子结构(目标域)同太阳系(源域)作类比,揭示了原子结构的奥秘。

5)基于解释的学习 (Explanation-based learning, EBL)

学生根据教师提供的目标概念、该概念的一个例子、领域理论及可操作准则,首先构造一个解释来说明为什该例子满足目标概念,然后将解释推广为目标概念的一个满足可操作准则的充分条件。EBL已被广泛应用于知识库求精和改善系统的性能。

着名的EBL系统有迪乔恩(G.DeJong)的GENESIS,米切尔(T.Mitchell)的LEXII和LEAP, 以及明顿(S.Minton)等的PRODIGY。

6)归纳学习 (Learning from inction)

归纳学习是由教师或环境提供某概念的一些实例或反例,让学生通过归纳推理得出该概念的一般描述。这种学习的推理工作量远多于示教学习和演绎学习,因为环境并不提供一般性概念描述(如公理)。从某种程度上说,归纳学习的推理量也比类比学习大,因为没有一个类似的概念可以作为"源概念"加以取用。归纳学习是最基本的,发展也较为成熟的学习方法,在人工智能领域中已经得到广泛的研究和应用。

基于所获取知识的表示形式分类

学习系统获取的知识可能有:行为规则、物理对象的描述、问题求解策略、各种分类及其它用于任务实现的知识类型。

对于学习中获取的知识,主要有以下一些表示形式:

1)代数表达式参数

学习的目标是调节一个固定函数形式的代数表达式参数或系数来达到一个理想的性能。

2)决策树

用决策树来划分物体的类属,树中每一内部节点对应一个物体属性,而每一边对应于这些属性的可选值,树的叶节点则对应于物体的每个基本分类。

3)形式文法

在识别一个特定语言的学习中,通过对该语言的一系列表达式进行归纳,形成该语言的形式文法。

4)产生式规则

产生式规则表示为条件—动作对,已被极为广泛地使用。学习系统中的学习行为主要是:生成、泛化、特化(Specialization)或合成产生式规则。

5)形式逻辑表达式

形式逻辑表达式的基本成分是命题、谓词、变量、约束变量范围的语句,及嵌入的逻辑表达式。

6)图和网络

有的系统采用图匹配和图转换方案来有效地比较和索引知识。

7)框架和模式(schema)

每个框架包含一组槽,用于描述事物(概念和个体)的各个方面。

8)计算机程序和其它的过程编码

获取这种形式的知识,目的在于取得一种能实现特定过程的能力,而不是为了推断该过程的内部结构。

9)神经网络

这主要用在联接学习中。学习所获取的知识,最后归纳为一个神经网络。

10)多种表示形式的组合

有时一个学习系统中获取的知识需要综合应用上述几种知识表示形式。

根据表示的精细程度,可将知识表示形式分为两大类:泛化程度高的粗粒度符号表示、??泛化程度低的精粒度亚符号(sub-symbolic)表示。像决策树、形式文法、产生式规则、形式逻辑表达式、框架和模式等属于符号表示类;而代数表达式参数、图和网络、神经网络等则属亚符号表示类。

按应用领域分类

最主要的应用领域有:专家系统、认知模拟、规划和问题求解、数据挖掘、网络信息服务、图象识别、故障诊断、自然语言理解、机器人和博弈等领域。

从机器学习的执行部分所反映的任务类型上看,大部分的应用研究领域基本上集中于以下两个范畴:分类和问题求解。

(1)分类任务要求系统依据已知的分类知识对输入的未知模式(该模式的描述)作分析,以确定输入模式的类属。相应的学习目标就是学习用于分类的准则(如分类规则)。

(2)问题求解任务要求对于给定的目标状态,??寻找一个将当前状态转换为目标状态的动作序列;机器学习在这一领域的研究工作大部分集中于通过学习来获取能提高问题求解效率的知识(如搜索控制知识,启发式知识等)。

综合分类

综合考虑各种学习方法出现的历史渊源、知识表示、推理策略、结果评估的相似性、研究人员交流的相对集中性以及应用领域等诸因素。将机器学习方法[1] 区分为以下六类:

1)经验性归纳学习 (empirical inctive learning)

经验性归纳学习采用一些数据密集的经验方法(如版本空间法、ID3法,定律发现方法)对例子进行归纳学习。其例子和学习结果一般都采用属性、谓词、关系等符号表示。它相当于基于学习策略分类中的归纳学习,但扣除联接学习、遗传算法、加强学习的部分。

2)分析学习(analytic learning)

分析学习方法是从一个或少数几个实例出发,运用领域知识进行分析。其主要特征为:

·推理策略主要是演绎,而非归纳;

·使用过去的问题求解经验(实例)指导新的问题求解,或产生能更有效地运用领域知识的搜索控制规则。

分析学习的目标是改善系统的性能,而不是新的概念描述。分析学习包括应用解释学习、演绎学习、多级结构组块以及宏操作学习等技术。

3)类比学习

它相当于基于学习策略分类中的类比学习。在这一类型的学习中比较引人注目的研究是通过与过去经历的具体事例作类比来学习,称为基于范例的学习(case_based learning),或简称范例学习。

4)遗传算法(genetic algorithm)

遗传算法模拟生物繁殖的突变、交换和达尔文的自然选择(在每一生态环境中适者生存)。它把问题可能的解编码为一个向量,称为个体,向量的每一个元素称为基因,并利用目标函数(相应于自然选择标准)对群体(个体的集合)中的每一个个体进行评价,根据评价值(适应度)对个体进行选择、交换、变异等遗传操作,从而得到新的群体。遗传算法适用于非常复杂和困难的环境,比如,带有大量噪声和无关数据、事物不断更新、问题目标不能明显和精确地定义,以及通过很长的执行过程才能确定当前行为的价值等。同神经网络一样,遗传算法的研究已经发展为人工智能的一个独立分支,其代表人物为霍勒德(J.H.Holland)。

5)联接学习

典型的联接模型实现为人工神经网络,其由称为神经元的一些简单计算单元以及单元间的加权联接组成。

6)增强学习(reinforcement learning)

增强学习的特点是通过与环境的试探性(trial and error)交互来确定和优化动作的选择,以实现所谓的序列决策任务。在这种任务中,学习机制通过选择并执行动作,导致系统状态的变化,并有可能得到某种强化信号(立即回报),从而实现与环境的交互。强化信号就是对系统行为的一种标量化的奖惩。系统学习的目标是寻找一个合适的动作选择策略,即在任一给定的状态下选择哪种动作的方法,使产生的动作序列可获得某种最优的结果(如累计立即回报最大)。

在综合分类中,经验归纳学习、遗传算法、联接学习和增强学习均属于归纳学习,其中经验归纳学习采用符号表示方式,而遗传算法、联接学习和加强学习则采用亚符号表示方式;分析学习属于演绎学习。

实际上,类比策略可看成是归纳和演绎策略的综合。因而最基本的学习策略只有归纳和演绎。

从学习内容的角度看,采用归纳策略的学习由于是对输入进行归纳,所学习的知识显然超过原有系统知识库所能蕴涵的范围,所学结果改变了系统的知识演绎闭包, 因而这种类型的学习又可称为知识级学习;而采用演绎策略的学习尽管所学的知识能提高系统的效率,但仍能被原有系统的知识库所蕴涵,即所学的知识未能改变系统的演绎闭包,因而这种类型的学习又被称为符号级学习。

学习形式分类

1)监督学习(supervised learning)

监督学习,即在机械学习过程中提供对错指示。一般实在是数据组中包含最终结果(0,1)。通过算法让机器自我减少误差。这一类学习主要应用于分类和预测 (regression & classify)。监督学习从给定的训练数据集中学习出一个函数,当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求是包括输入和输出,也可以说是特征和目标。训练集中的目标是由人标注的。常见的监督学习算法包括回归分析和统计分类。

2)非监督学习(unsupervised learning)

非监督学习又称归纳性学习(clustering)利用K方式(Kmeans),建立中心(centriole),通过循环和递减运算(iteration&descent)来减小误差,达到分类的目的。

Ⅹ 强化学习与其他机器学习方法有什么不同

我们都知道,人工智能是一个十分重要的技术,现在很多的大型科技公司都开始重视人工智能的发展。人工智能的发展不是空穴开风,是因为机器学习使得人工智能有了飞跃的发展。其实机器学习的方法有很多,在这篇文章中我们就重点说一下机器学习中的强化学习。强化学习是机器学习中一个十分重要的方法,那强化学习与其他机器学习方法究竟有什么不同呢?下面我们就给大家解答一下这个问题。
首先我们给大家介绍一下什么是强化学习,其实强化学习又称再励学习、评价学习,是一种重要的机器学习方法,在智能控制机器人及分析预测等领域有许多应用。在传统的机器学习分类中没有提到过强化学习,而在连接主义学习中,把学习算法分为三种类型,即非监督学习、监督学习和强化学习。
那么强化学习与别的算法有什么区别呢?首先我们给大家说一下监督学习和强化学习的区别,在监督学习中,在外部有一个“监督主管”,它拥有所有环境的知识,并且与智能体一起共享这个知识,从而帮助智能体完成任务。但是这样存在一些问题,因为在一个任务中,其中存在如此多的子任务之间的组合,智能体应该执行并且实现目标。所以,创建一个“监督主管”几乎是不切实际的。在这些问题中,从自己的经验中学习,并且获得知识是更加合理可行的。这就是强化学习和监督学习的主要区别。在监督学习和强化学习中,在输入和输出之间都存在映射。但是在强化学习中,存在的是对智能体的奖励反馈函数,而不是像监督学习直接告诉智能体最终的答案。
然后我们给大家说一下无监督学习与强化学习的区别,在强化学习中,有一个从输入到输出的映射过程,但是这个过程在无监督学习中是不存在的。在无监督学习中,主要任务是找到一个最基础的模式,而不是一种映射关系。无监督学习就是根据自己获得的数据去构建一个“知识图谱”,从而去找出相似内容的数据。具体应用就是新闻头条的适配。
其实还有第四种类型的机器学习,成为半监督学习,其本质上是监督学习和无监督学习的组合。它不同于强化学习,类似于监督学习和半监督学习具有直接的参照答案,而强化学习不具有。
关于强化学习与其他机器学习算法的不同我们就给大家介绍到这里了,相信大家对强化学习的知识有了更深的了解了吧?希望这篇文章能够更好的帮助大家理解强化学习。

阅读全文

与机器学习方法最常用三种类型相关的资料

热点内容
玻璃水种真假的鉴别方法 浏览:597
识字教学方法幼小衔接 浏览:826
论文类似于swot的分析方法 浏览:964
小脑病变怎样治疗方法 浏览:296
自我检测五官的方法 浏览:758
宫灯图片制作方法 浏览:688
油菜花的种植方法和功效 浏览:682
用什么方法可以让鱼到水面吃食 浏览:702
戴口罩正确方法 浏览:488
iqoo手机网络卡顿严重解决方法 浏览:204
安装障碍物的方法 浏览:332
硬盘在电脑里的使用方法 浏览:957
手机臂带使用方法 浏览:835
橱柜门板测量方法 浏览:159
通气还有哪些方法 浏览:732
长了口腔溃疡最快解决方法 浏览:788
对于溜狗的正确方法 浏览:309
快速催瓜熟的方法 浏览:707
已知边际函数求原经济函数的方法有哪些 浏览:468
考试怎么调后视镜正确方法 浏览:554