‘壹’ 聚类分析的分析原理是什么。
聚类分析是研究“物以类聚”的一种科学有效的方法。做聚类分析时,出于不同的目的和要求,可以选择不同的统计量和聚类方法。
系统聚类是目前应用最为广泛的一种聚类方法,其基本思想是:先将待聚类的n个样品(或者变量)各自看成一类,共有n类;然后按照实现选定的方法计算每两类之间的聚类统计量,即某种距离(或者相似系数),将关系最为密切的两类合为一类,其余不变,即得到n-1类;再按照前面的计算方法计算新类与其他类之间的距离(或相似系数),再将关系最为密切的两类并为一类,其余不变,即得到n-2类;如此下去,每次重复都减少一类,直到最后所有的样品(或者变量)都归为一类为止。
‘贰’ K均值聚类法和系统聚类法有什么区别,这两种聚类方法的适用条件都是什么
适用条件:系统聚类法适于二维有序样品聚类的样品个数比较均匀。K均值聚类法适用于快速高效,特别是大量数据时使用。
两者区别如下:
一、指代不同
1、K均值聚类法:是一种迭代求解的聚类分析算法。
2、系统聚类法:又叫分层聚类法,聚类分析的一种方法。
二、步骤不同
1、K均值聚类法:步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。
2、系统聚类法:开始时把每个样品作为一类,然后把最靠近的样品(即距离最小的群品)首先聚为小类,再将已聚合的小类按其类间距离再合并,不断继续下去,最后把一切子类都聚合到一个大类。
三、目的不同
1、K均值聚类法:终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。
2、系统聚类法:是以距离为相似统计量时,确定新类与其他各类之间距离的方法,如最短距离法、最长距离法、中间距离法、重心法、群平均法、离差平方和法、欧氏距离等。
‘叁’ 有哪些常用的聚类算法
聚类分析计算方法主要有如下几种:
1. 划分法(partitioning methods)
给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;
2. 层次法(hierarchical methods)
这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。例如在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等;
3. 基于密度的方法(density-based methods)
基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。这个方法的指导思想就是,只要一个区域中的点的密度大过某个阀值,就把它加到与之相近的聚类中去。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等;
4. 基于网格的方法(grid-based methods)
这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。这么处理的一个突出的优点就是处理速度很快,通常这是与目标数据库中记录的个数无关的,它只与把数据空间分为多少个单元有关。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法;
5. 基于模型的方法(model-based methods)
基于模型的方法给每一个聚类假定一个模型,然后去寻找能个很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在的假定就是:目标数据集是由一系列的概率分布所决定的。通常有两种尝试方向:统计的方案和神经网络的方案。
‘肆’ 如何运用聚类分析法
聚类分析法是理想的多变量统计技术,主要有分层聚类法和迭代聚类法。聚类通过把目标数据放入少数相对同源的组或“类”(cluster)里。分析表达数据,(1)通过一系列的检测将待测的一组基因的变异标准化,然后成对比较线性协方差。(2)通过把用最紧密关联的谱来放基因进行样本聚类,例如用简单的层级聚类(hierarchical clustering)方法。这种聚类亦可扩展到每个实验样本,利用一组基因总的线性相关进行聚类。(3)多维等级分析(multidimensional scaling analysis,MDS)是一种在二维Euclidean “距离”中显示实验样本相关的大约程度。(4)K-means方法聚类,通过重复再分配类成员来使“类”内分散度最小化的方法。
聚类方法有两个显着的局限:首先,要聚类结果要明确就需分离度很好(well-separated)的数据。几乎所有现存的算法都是从互相区别的不重叠的类数据中产生同样的聚类。但是,如果类是扩散且互相渗透,那么每种算法的的结果将有点不同。结果,每种算法界定的边界不清,每种聚类算法得到各自的最适结果,每个数据部分将产生单一的信息。为解释因不同算法使同样数据产生不同结果,必须注意判断不同的方式。对遗传学家来说,正确解释来自任一算法的聚类内容的实际结果是困难的(特别是边界)。最终,将需要经验可信度通过序列比较来指导聚类解释。
第二个局限由线性相关产生。上述的所有聚类方法分析的仅是简单的一对一的关系。因为只是成对的线性比较,大大减少发现表达类型关系的计算量,但忽视了生物系统多因素和非线性的特点。
从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS、SAS等。
从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。
从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。就数据挖掘功能而言,聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。
聚类分析还可以作为其他数据挖掘任务(如分类、关联规则)的预处理步骤。
数据挖掘领域主要研究面向大型数据库、数据仓库的高效实用的聚类分析算法。
聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。
这些算法可以被分为划分方法、层次方法、基于密度方法、基于网格方法和
基于模型方法。
1 划分方法(PAM:PArtitioning method) 首先创建k个划分,k为要创建的划分个数;然后利用一个循环
定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:
k-means,k-medoids,CLARA(Clustering LARge Application),
CLARANS(Clustering Large Application based upon RANdomized Search).
FCM
2 层次方法(hierarchical method) 创建一个层次以分解给定的数据集。该方法可以分为自上
而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合
并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:
第一个是;BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用树的结构对对象集进行划分;然后再利
用其它聚类方法对这些聚类进行优化。
第二个是CURE(Clustering Using REprisentatives) 方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定
量(向聚类中心)进行收缩。
第三个是ROCK方法,它利用聚类间的连接进行聚类合并。
最后一个CHEMALOEN,它则是在层次聚类时构造动态模型。
3 基于密度方法,根据密度完成对象的聚类。它根据对象周围的密度(如
DBSCAN)不断增长聚类。典型的基于密度方法包括:
DBSCAN(Densit-based Spatial Clustering of Application with Noise):该算法通过不断生长足够高密
度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义
为一组“密度连接”的点集。
OPTICS(Ordering Points To Identify the Clustering Structure):并不明确产生一
个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。
4 基于网格方法,首先将对象空间划分为有限个单元以构成网格结构;然后利
用网格结构完成聚类。
STING(STatistical INformation Grid) 就是一个利用网格单元保存的统计信息进行基
于网格聚类的方法。
CLIQUE(Clustering In QUEst)和Wave-Cluster 则是一个将基于网格与基于密度相结合的方
法。
5 基于模型方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的
基于模型方法包括:
统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采
用符号量(属性-值)对来加以描述的。采用分类树的形式来创建
一个层次聚类。
CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚
类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利
用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)
和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。
因此它们都不适合对大数据库进行聚类处理.
‘伍’ 在进行系统聚类分析时,不同的类间距离计算方法有何区别
聚类分析有两种主要计算方法,分别是凝聚层次聚类(Agglomerative hierarchical method)和K均值聚类(K-Means)。
一、层次聚类
层次聚类又称为系统聚类,首先要定义样本之间的距离关系,距离较近的归为一类,较远的则属于不同的类。可用于定义“距离”的统计量包括了欧氏距离 (euclidean)、马氏距离(manhattan)、 两项距离(binary)、明氏距离(minkowski)。还包括相关系数和夹角余弦。
层次聚类首先将每个样本单独作为一类,然后将不同类之间距离最近的进行合并,合并后重新计算类间距离。这个过程一直持续到将所有样本归为一类为止。在计算类间距离时则有六种不同的方法,分别是最短距离法、最长距离法、类平均法、重心法、中间距离法、离差平方和法。
下面我们用iris数据集来进行聚类分析,在R语言中所用到的函数为hclust。首先提取iris数据中的4个数值变量,然后计算其欧氏距离矩阵。然后将矩阵绘制热图,从图中可以看到颜色越深表示样本间距离越近,大致上可以区分出三到四个区块,其样本之间比较接近。
data=iris[,-5]
dist.e=dist(data,method='euclidean')
heatmap(as.matrix(dist.e),labRow = F, labCol = F)
X
然后使用hclust函数建立聚类模型,结果存在model1变量中,其中ward参数是将类间距离计算方法设置为离差平方和法。使用plot(model1)可以绘制出聚类树图。如果我们希望将类别设为3类,可以使用cutree函数提取每个样本所属的类别。
model1=hclust(dist.e,method='ward')
result=cutree(model1,k=3) 为了显示聚类的效果,我们可以结合多维标度和聚类的结果。先将数据用MDS进行降维,然后以不同的的形状表示原本的分类,用不同的颜色来表示聚类的结果。可以看到setose品种聚类很成功,但有一些virginica品种的花被错误和virginica品种聚类到一起。
‘陆’ 系统聚类的原理
确定了距离和相似系数后就要进行分类。分类有许多种方法,最常用的一种方法是在样品距离的基础上定义类与类之间的距离。首先将n个样品分成n类,每个样品自成一类,然后每次将具有最小距离的两类合并,合并后重新计算类与类之间的距离,这个过程一直持续到将所有的样品归为一类为止,并把这个过程画成一张聚类图,参照聚类图可方便地进行分类。因为聚类图很像一张系统图,所以这种方法就叫系统聚类法。系统聚类法是在实际中使用最多的一种方法,从上面的分析可以看出,虽然我们已给了计算样品之间距离的方法,但在实际计算过程中还要定义类与类之间的距离。定义类与类之间的距离也有许多方法,不同的方法就产生了不同的系统聚类方法,常用的有如下六种:
(1)最短距离法:类与类之间的距离等于两类最近样品之间的距离;
(2)最长距离法:类与类之间的距离等于两类最远样品之间的距离:
(3)类平均法:类与类之问的距离等于各类元素两两之间的平方距离的平均;
(4)重心法:类与类之间的距离定义为对应这两类重心之间的距离对样品分类来说,每一类的类重心就是该类样品的均值;
(5)中间距离法:最长距离法夸大了类间距离,最短距离法低估了类间距离介于两者问的距离法即为中间距离法,类与类之问的距离既不采用两类之间最近距离。也不采用最远距离,而是采用介于最远和最近之间的距离;
(6)离差平方和法(Ward法):基于方差分析的思想,如果分类正确,同类样品之间的离差平方和应当较小,类与类之间的离差平方和应当较大
‘柒’ spss系统聚类分析解读
1.打开SPSS19.0,在界面铲肤内输入你需要分析的数据.
2.在上面菜单栏选择“分析”-“分类”-“系统聚类”,得到系统聚类选项框
3.将A、B、C、D四组数据分别选择进入变量框内.
4.点击右边“绘制”选项,披涛羞选中“树状图”.
5.在“方法”选项中选择你需要选择的方法.
6.点击“继续”-“确认”.恭喜你,你需要的系统类聚树状图舍牺出来了.
‘捌’ 常用的聚类方法有哪几种
聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。
1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。
2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。
3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。
4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。
5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。
6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。
(8)系统类聚的常用方法扩展阅读:
在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。
它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。
许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。
许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。
‘玖’ 聚类分析中常见的数据类型有哪些
简单地说,分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类.
简单地说,聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程.
区别是,分类是事先定义好类别 ,类别数不变 .分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴.聚类则没有事先预定的类别,类别数不确定. 聚类不需要人工标注和预先训练分类器,类别在聚类过程中自动生成 .分类适合类别或分类体系已经确定的场合,比如按照国图分类法分类图书;聚类则适合不存在分类体系、类别数不确定的场合,一般作为某些应用的前端,比如多文档文摘、搜索引擎结果后聚类(元搜索)等.
分类的目的是学会一个分类函数或分类模型(也常常称作分类器 ),该模型能把数据库中的数据项映射到给定类别中的某一个类中. 要构造分类器,需要有一个训练样本数据集作为输入.训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记.一个具体样本的形式可表示为:(v1,v2,...,vn; c);其中vi表示字段值,c表示类别.分类器的构造方法有统计方法、机器学习方法、神经网络方法等等.
聚类(clustering)是指根据“物以类聚”原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程.它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似.与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组.其目的旨在发现空间实体的属性间的函数关系,挖掘的知识用以属性名为变量的数学方程来表示.聚类技术正在蓬勃发展,涉及范围包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等领域,聚类分析已经成为数据挖掘研究领域中一个非常活跃的研究课题.常见的聚类算法包括:K-均值聚类算法、K-中心点聚类算法、CLARANS、 BIRCH、CLIQUE、DBSCAN等.
‘拾’ 几种主要类聚方法的比较和试验
引言 聚类分析是人类的区分标志之一,从孩提时代开始,一个人就下意识地学会区分动植物,并且不断改进。这一原理在如今不少领域得到了相应的研究和应用,比如模式识别、数据分析、图像处理、Web文档分类等。 将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。 聚类技术正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。 1 聚类算法的分类 现在有很多的聚类算法,而在实际应用中,正确选择聚类算法的则取决于数据的类型、聚类的目的等因素。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。 已知的聚类算法可以大致划分为以下几类:划分方法、层次方法、基于密度的方法、基于网格的方法和基于模型的方法。 每一个类型的算法都被广泛地应用着,例如:划分方法中的k-means聚类算法、层次方法中的凝聚型层次聚类算法、基于模型方法中的神经网络聚类算法等。 聚类问题的研究早已不再局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类也是聚类分析中研究较为广泛的一个“流派”。模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如FCM算法。 本文主要分析和比较k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法。通过通用测试数据集进行聚类效果的比较和分析。 2 四种常用聚类算法研究 2.1 k-means聚类算法 k-means是划分方法中较经典的聚类算法之一。该算法的效率高,使得在对大规模数据进行聚类时广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。 k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下: 这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi是簇Ci的平均值。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下: 输入:包含n个对象的数据库和簇的数目k; 输出:k个簇,使平方误差准则最小。 步骤: (1) 任意选择k个对象作为初始的簇中心; (2) repeat; (3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇; (4) 更新簇的平均值,即计算每个簇中对象的平均值; (5) until不再发生变化。 2.2 层次聚类算法 根据层次分解的顺序,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。四种广泛采用的簇间距离度量方法如下: 这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。 2.3 SOM聚类算法 SOM神经网络是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。 SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。 算法流程: (1) 网络初始化,对输出层每个节点权重赋初值; (2) 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量; (3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢; (4) 提供新样本、进行训练; (5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。 2.4 FCM聚类算法 1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析。 FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。 算法流程: (1) 标准化数据矩阵; (2) 建立模糊相似矩阵,初始化隶属矩阵; (3) 算法开始迭代,直到目标函数收敛到极小值; (4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。 3 试验 3.1 试验数据 实验中,选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS数据集,IRIS数据集包含150个样本数据,分别取自三种不同的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度,单位为cm。在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。 3.2 试验结果说明 文中基于前面所述各算法原理及算法流程,用matlab进行编程运算,得到表1所示聚类结果。 如表1所示,对于四种聚类算法,按三方面进行比较: (1)聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和; (2)运行时间:即聚类整个过程所耗费的时间,单位为s; (3)平均准确度:设原数据集有k个类,用ci表示第i类,ni为ci中样本的个数,mi为聚类正确的个数,则mi/ni为第i类中的精度,则平均精度为: 3.3 试验结果分析 四种聚类算法中,在运行时间及准确度方面综合考虑,k-means和FCM相对优于其他。但是,各个算法还是存在固定缺点:k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定,本实验中虽是经过多次实验取的平均值,但是具体初始点的选择方法还需进一步研究;层次聚类虽然不需要确定分类数,但是一旦一个分裂或者合并被执行,就不能修正,聚类质量受限制;FCM对初始聚类中心敏感,需要人为确定聚类数,容易陷入局部最优解;SOM与实际大脑处理有很强的理论联系。但是处理时间较长,需要进一步研究使其适应大型数据库。 4 结语 聚类分析因其在许多领域的成功应用而展现出诱人的应用前景,除经典聚类算法外,各种新的聚类方法正被不断被提出。
该文章仅供学习参考使用,版权归作者所有。