㈠ 常用的两种概率分析方法
1、用笔和纸算
2、第一种方法和第二种方法
管理学原理期末考试试题与答案、 一、名词解释(本大题共7小题,每小题3分,共21分) 管理 目标管理 预测 决策 人员配备 激励 控制 二、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,。
㈢ 常用的概率抽样方法有哪些,各自的含义如何
1、简单随机抽样
有放回简单随机抽样从总体中随机抽出一个样本单位,记录观测结果后,将其放回到总体中去,再抽取第二个,如此类推,一直到抽满n个单位为止。
单位有被重复抽中的可能,容易造成信息重叠而影响估计的效率,较少采用。
2、不放回简单随机抽样
从包含N个单元的总体中逐个随机抽取单元并无放回,每次都在所有尚未被抽入样本的单元中等概率的抽取下一个单元,直到抽取n个单元为止。
每个单位最多只能被抽中一次,不会由于样本单位被重复抽中而提供重叠信息,比放回抽样有更低的抽样误差。
3、分层抽样
先按照某种规则把总体分为不同的层,然后在不同的层内独立、随机的抽取样本,这样所得到的样本称为分层样本。如果每层中的抽样都是简单随机抽样,则称为分层随机抽样。
4、系统抽样
系统抽样指先将总体中的所有单元按一定顺序排列,在规定范围内随机抽取一个初始单元,然后按事先规定的规则抽取其他样本单元。最简单的系统抽样是等距抽样。
5、整群抽样
整群抽样是将总体中所有的基本单位按照一定规则划分为互不重叠的群,抽样时直接抽取群,对抽中的群调查其全部的基本单位,对没有抽中的群则不进行调查。
(3)交通流统计分布常用的概率方法扩展阅读
概率抽样包括以下几个方面的优点:调查者可获得被抽取的不同年龄、不同层次的人们的信息; 能估算出抽样误差; 调查结果可以用来推断总体。
例如,在一项使用概率抽样法的调查中,如果有 5 %的被访者给出了某种特定回答,那么,调查者就可以以此百分比再结合抽样误差,推及总体情况。
另一方面,概率抽样也有一些弊病:在大多数案例中,同样规模的概率抽样的费用要比非概率抽样高;概率抽样比非概率抽样需要更多时间策划和实施;必须遵守的抽样计划执行程序会大量增加收集资料的时间。
㈣ 交通流的交通流理论
1.概率论的应用
主要应用概率论方法研究车流的分布规律。车流的统计分布是用概率论方法研究交通现象的基础,同时也直接应用在转弯车道长度的设计、行人过街控制信号的设计、通行能力及车速标准的确定等方面。常用概率论方法研究的车流分布有车流计数分布、间隔分布和车速分布三种
2.排队论的应用
排队论是研究分析服务对象发生排队拥挤现象的一种数学理论。是运筹学的一个重要内容。排队论主要研究等待时间,排队长度的概率分布,以便合理协调“服务对象”与“服务系统”之间的关系,使之既能满足“服务对象”的要求,又能最大限度地节省服务系统的经费。
3.车流波动理论
将交通流比拟为流体,把车流密度的疏密变化比拟成水波的起伏而抽象为车流波。车流波动理论就是假设车流因道路或交通状况的改变而引起车流密度的改变时,在车流中产生车流波的传播,分析车流波的传播速度可寻求车流流量和密度同车速之间的关系的一种理论。
4.跟车理论。
运用动力学方法研究车辆列队在无法超车的单一车道上行驶时,后车跟随前车的行驶状态,并用数学模式表达而且加以阐明的一种理论。因考察的对象是单辆车辆在行驶过程中的相互关系,所以是一种微观的分析方法。在连续行车情况下,后车要与前车保持一定的安全距离而经常随着前车改变车速,这种改变可简略地表达为: 后车车速变化-驾驶员反应灵敏度*前车车速变化
㈤ 什么是所以交通量车道分布系数!如何取值
指不同情况车道的横向分布系数与单车道的横向分布系数之比。
在沥青路面设计方法中,以单车道行驶时的横向分布系数为基准,其他情况下车道的横向分布系数与该值的比值。
方向分布系数反应不同方向的交通流量差异的原因。一些方向交通流较大而一些方向交通流量较小,是因为不同方向分布的学校、产业、商业、居民以及用地性质不同而产生的交通量不同,是交通量时空特性的反应。
(5)交通流统计分布常用的概率方法扩展阅读:
在设计中一般采用车道系数代表方向分布系数。分为沥青路面和水泥路面:沥青路面用轮迹分布系数表示,水泥路面用路面车道分布系数表示。
分布系数(P)为某物质的未解离形态在两相中的活度之比。测量可离解物质的分布系数时,需要调整溶液pH以使该物质主要是以未解离的形态存在于溶液中。log P为P的常用对数。
㈥ 常用统计分析方法有哪些
1、对比分析法
对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。
横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。
纵向对比指的是同一事物在时间维度上的变化,例如,环比、同比和定基比,也就是本月销售额与上月销售额的对比,本年度1月份销售额与上一年度1月份销售额的对比,本年度每月销售额分别与上一年度平均销售额的对比等。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。
2、分组分析法
分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。
根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。
3、预测分析法
预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。
4、漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡。
最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。
5、AB测试分析法
AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。
例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。
除此之外,要想做好数据分析,读者还需掌握一定的数学基础,例如,基本统计量的概念(均值、方差、众数、中位数等),分散性和变异性的度量指标(极差、四分位数、四分位距、百分位数等),数据分布(几何分布、二项分布等),以及概率论基础、统计抽样、置信区间和假设检验等内容,通过相关指标和概念的应用,让数据分析结果更具专业性。
㈦ 5种常用的统计学方法是什么
1、大量观察法
(7)交通流统计分布常用的概率方法扩展阅读:
(一)大量观察法
这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上几存有差异。
但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。统计学的各种调查方法都属于大量观察法。
(二)、统计分组法
由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);
在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显着性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。
(三)、综合指标法
统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。
综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。
㈧ 车辆的到来与离开时间符合什么样的概率分布
车流的统计分布是用概率论方法研究交通现象的基础,同时也直接应用在转弯车道长度的设计、行人过街控制信号的设计、通行能力及车速标准的确定等方面。常用概率论方法研究的车流分布有车流计数分布、间隔分布和车速分布三种。①车流计数分布:在每个时间区间内到达某地车辆数的概率分布,又称到达分布。车流密度不大,且不受其他干扰因素的影响时,计数分布符合泊松分布;交通拥挤、车辆连续行驶时,计数分布符合二项分布或广义泊松分布;交通受周期性干扰(如受交通信号的干扰)时,计数分布则符合负二项分布。②间隔分布:到达车辆彼此车头时距(前后到达车辆车头间相隔距离,以秒表示)的概率分布。计数分布属泊松分布时,相应的间隔分布符合于负指数分布;计数分布属广义泊松分布时,相应的间隔分布则符合厄兰分布。③车速分布:车辆在路上行驶时出现各种车速的概率分布。轿车在缓坡路段上自由行驶时,车速分布符合正态分布;高速干道上车流的车速分布符合对数正态分布。
㈨ 交通流理论的研究方法
研究的主要方法有:①概率论方法。假定道路上行驶的车辆互相独立,车辆分布随机,并假定各个车辆行驶是一种概率过程而用概率的理论加以分析的方法;②流体力学方法。即交通波动理论,假定交通流是具有特定性质的一种流体,应用气体运动或声波、洪水波理论,宏观地表现这种现象的变化、演进的方法;③动力学方法。即跟车理论,就是在交通流中追随前车的后车,假定其向前移动有某种规律性,据此可求得各车辆动力学状态的微分方程式。后两种方法较有前途,主要应用于道路服务水平与通行能力评价,交通量与交通事故预测,交通信号控制和消除汽车排队和等候等方面。
㈩ 概率统计方法有哪些
总体来说,所有的统计推断都要依赖概率知识,因而都是概率统计,分两大类就是包括参数估计和假设检验。
再具体地说,方法就多了。假设检验包括:独立样本T检验、单样本T检验、配对样本T检验、相关系数检验、方差分析,以及众多的非参数假设,包括卡方检验、KS检验、Fridman检验,多了去了。