A. 求逆矩阵方法
1、初等变换法
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵
(1)求矩阵最常用的方法有什么扩展阅读:
可逆矩阵的性质定理
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T(转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
B. 求矩阵的秩的三种方法
求矩阵的秩的几种方法:
1、通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。
2、通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。
3、对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。
4、对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。
5、对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。
(2)求矩阵最常用的方法有什么扩展阅读:
矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
简便快速的不一定有,但通常的方法也很有效: 1、初等行变换:对 (AE) 施行初等行变换,把前面的 A 化为单位矩阵,则后面的 E 就化为了 A^-1 。 2、伴随矩阵法:如果 A 可逆,则 A^-1 = 1/|A| * (A^*) 其中 |A| 是 A 的行列式,A^* 是 A 的伴随矩阵。 3、如果 A 是二阶矩阵,倒是有简便快速的方法:主对角交换,副对角取反,再除行列式。这其实仍是伴随矩阵法。
D. 矩阵函数的求解方法
1、用矩阵标准型求矩阵函数
(1)设方阵A相似于对角阵,即
,其中矩阵内的值是A的n个特征值,则
(2)当A不能与对角阵相似时,则A必与Jordan标准型相似,设最后
2、用最小多项式求矩阵函数
第一步 计算矩阵A的最小多项式,确定其次数m及特征值;
第二步 设,确定出系数;
第三步 代入可求得。
E. 如何快速求一个矩阵的秩详细方法是什么
求矩阵的秩的几种方法:
1、通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。
2、通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。
3、对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。
4、对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。
基本运算:
矩阵运算在科学计算中非常重要 ,而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置 。
F. 矩阵的秩有几种求法,或者说是有几种常见的情况,每种
矩阵秩的求法很多,一般归结起来有以下几种:
1)通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。
2)通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。
3)对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。
4)对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。
5)对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。
G. 矩阵求法计算 谢了 主要是方法
你写得好乱哦!不过都是非常简单的运算噻!
给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。举例:
另类加法可见于矩阵加法.
若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如
这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn.
若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中
(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。
例如
此乘法有如下性质:
(AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律").
(A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。
C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。
要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。
对其他特殊乘法,见矩阵乘法。
[编辑本段]其他性质
线性变换,秩,转置
矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系:
以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x ∈ Rn。 这矩阵 A "代表了" 线性变换 f。 今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。
矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。
m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性:
(A + B)tr = Atr + Btr,(AB)tr = BtrAtr。
H. 求逆矩阵的方法
典型的矩阵求逆方法有:利用定义求逆矩阵、初等变换法、伴随阵法、恒等变形法等。
一般有2种方法。
1、伴随矩阵法。A的逆矩阵=A的伴随矩阵/A的行列式。
2、初等变换法。A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵。
第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0)。
矩阵可逆的充要条件是系数行列式不等于零。
定义法和恒等变形法
利用定义求逆矩阵
定义:设A、B都是n阶方阵,如果存在n阶方阵B使得AB=BA=E,则称A为可逆矩阵,而称B为A的逆矩阵。下面举例说明这种方法的应用。
恒等变形法
恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用于矩阵的理论推导上,就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用
I. 求矩阵的秩,除了我写的这种,还有什么方法啊
求秩有三种方法:
你给的例子 。用初等变换秩不变 然后讨论未知数情况;比较简单;
特殊行列式:用加边法、累加写出结果 ,用行列式值是否等于零与满秩的关系;
实对称针用多角化再判断。
矩阵的运算:矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。被称为“矩阵加法”、“数乘”和“转置”的运算不止一种。给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。
举例:另类加法可见于矩阵加法。若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn.若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。
如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。
例如此乘法有如下性质:(AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律").(A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。
要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。对其他特殊乘法,见矩阵乘法。