导航:首页 > 使用方法 > 证明题常用方法

证明题常用方法

发布时间:2022-01-10 04:11:41

Ⅰ 几何证明题的常用方法

证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。

*11.利用半圆上的圆周角是直角。

证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

证明角的和差倍分

1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

证明线段不等

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

*5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

证明比例式或等积式

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

*5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

Ⅱ 做数学证明题有什么好方法吗

我个人数学算是比较好的。浅谈一下,数学证明题在考试中是最最最容易拿分的题目。很多人觉得不好做或者没有好的方法去解答,是因为有这么一个误区在里面。
证明题切记一句话,很重要,不能用未知证已知。乍看下像是一句废话,但实际很实用。一个证明题目中,可以分成两部分,已知条件(这点就要自己细心分析了,包括基础知识的变形啊、基本功啊、数学模型建模啊等)和求证结论。思路上可以倒着来推到结论,但证明过程一定要正着写,就是用已知的真理、已知结论来推导出来,不管是不是废话,是不是众所周知的公理,只要不是题目给出的条件,就必须写出来推导过程,这是拿分要点。

其次说一说思路怎么来。一般要证明的东东比较不容易看出来,这个时候要到倒着来推导,先用题目给出的结论去推导题目的条件,切记,这个是思路!!比较容易得到中间它需要考察到你的关键知识点,一些定理变形云云。。如果是几何题目就更容易找到思路,基本就是默认求证是正确的,然后需要一条或几条关键的辅助线,这个就需要积累了,都是有规律的。 总之,思路要逆向来推导,先假设求证正确,反向推到已给条件,画出辅助线,求出辅助定理。。证明过程一定要用题目给出的条件一步步来正明。

Ⅲ 做证明题的方法

证明是数学上很难的东西,一般来说没有通用方法的。甚至有很多题要用到一些很高的技巧,这类技巧通常是不具备一般性的,换一道题就会换一种方法。因此要在这里说清楚如何做证明题是不可能的。有些证明只能是凭着灵光一闪突然想到,象这类证明题我称之为“仅供欣赏”。做证明题的一般思路就是先把所有已知条件摆出来,把要证的结论摆出来,简单的题目这样一摆就看到思路了。难题就需要从中寻找它们的联系了,而这也就是证明题中最难的一部分,通常要靠各种定理、定义、公理,或借签其它题的结论。这部分内容只能自己训练。熟能生巧。

Ⅳ 证明题技巧

分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)
。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)
。顾名思义,就是从相反的方向思考问题。运用
解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在
中,
是非常重要的
,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中
题,最好用的方法就是用
。如果你已经上初三了,
的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,
中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出
,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
建议看看这个:
http://wenku..com/link?url=5dtnEl2vJX-_Gljlkb24PxOTz_ZR2V2QCOzdf6L_0jS0wl3Nx4GVM6f2Uk986c7W

year中国真好为你解答如若满意,请点击[采纳为满意回答] O(∩_∩)O谢谢如若您有不满意之处,请追问,我一定改正!希望给您一个正确答复!祝您学业进步!

Ⅳ 解数学证明题的技巧有哪些

证明题有三种思考方式

● 正向思维

对于一般简单的题目,我们正向思考,轻而易举可以做出。这里就不详细讲述了。


● 逆向思维

顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如:

可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…

这样我们就找到了解题的思路,然后把过程正着写出来就可以了。


● 正逆结合

对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。

初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。

给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。


证明题要用到哪些原理

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。

下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。

一、证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两个角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

三、证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

四、证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

五、证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

六、证明角的和差倍分

1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

七、证明线段不等

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

八、证明两角的不等

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

九、证明比例式或等积式

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

十、证明四点共圆

1.对角互补的四边形的顶点共圆。

2.外角等于内对角的四边形内接于圆。

3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

4.同斜边的直角三角形的顶点共圆。

5.到顶点距离相等的各点共圆。

Ⅵ 证明题的做题方法是什么

顺着已知条件,应用各种公理和定理,对单个命题证明,或者说是利用普通性的结论对个别命题的成立做出证明,例如已知角A,角B,边长等等条件,让证明两个三角形全等之类的命题。该方法称为演绎法。

从结论找条件,意思是说该结论成立,但是要从个别性知识,引出一般性知识的推理,是由已知真的前提,引出可能真的结论,通俗的说,就是根据一个个别现象,证明某个结论的成立,比如证明各位数相加能被3整除的数字,其本身也能被3整除。

反证法

由于原命题与逆否命题等效,所以当证明原命题有困难或者无法证明时,可以考虑证明它的逆否命题,通过正确推理如果逆否命题正确或者推出与原命题题设、公理、定理等不相容的结论,从而判定结论的反面不成立,也就证明了原命题的结论是正确的。

反证法视逆否命题的题设也就是原命题的结论的反面的情况又分为两种:

1、归谬法:若结论的反面只有一种情况,那么把这种情况推翻就达到证明的目的了。

2、穷举法:若结论的反面不只一种情况,则必须将所有情况都驳倒,这样才能达到证明的目的。

Ⅶ 高中证明题有几种方法

直接证明(综合法和分析法)和间接证明(反证法)、数学归纳法

Ⅷ 几何证明题的一些方法

其实数学的证明题并不是很难,关键是信心与方法.
(1)必须要掌握最基本的证明方法与常用方法.例如,三角形全等的证明与书写,勾股定理的证明与运用,在几何题中运用方程与函数的方法等等.
(2)就是善于做辅助线,要掌握常用辅助线的作法,如作高,作中垂线等等,当然辅助线不是越多越好,一般不会超过两条(必须作两条辅助线的几何题就算是比较难的题了)中考中的几何题的辅助线最多一般不会超过两条,另外就得掌握什么时候作什么什么样的辅助线,一般情况就是例如求面积我们会作高,圆中我们经常连半径等等.
(3)当然某些题你可以用代数(算术与方程函数)来解决一些几何的证明问题.
(4)要善于在题目中发现已知条件与未知的关系,采用灵活有效的方法来解决,如所要求证的两条线段出现两个三角形当中,那你要研究一下这两个三角形的关系是全等还是相似,怎样能够证明出全等或相似.
(5)要不断总结各类几何题的做法,如梯形的几种辅助线的引法(共7种),一般圆中的问题如何解决(经常做半径)切线的证明(连半径,证垂直)等等,只要不断总结相信你一定会有所收获.

Ⅸ 证明题简题思路方法

1、配方法把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。 8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。 9、几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:(1)平移;(2)旋转;(3)对称。

Ⅹ 高分,求作证明题一般方法和技巧!!

这是两个不同的学科,虽然都属于数学ABC,但是,开始学大多会遇到麻烦。

微积分是讨论“连续”问题的,线性代数则研究“离散”现像。对象不同,方

法迥异,微积分的关键是极限,要学会用ε-δ方法去分析思考问题。线性代

数的基础是向量的相关性。要把那五六个定理弄熟,尽快适应。大学四年,

硕士三年,所学其实就是两个字---适应。谁适应快,谁就是强者。书上的定

理。自己做过的题,光背得是没有用的,一定要“品”。要“运”。“品”出

淡馍馍的甜味儿来。“运”到你全身的血脉中。好比一个软件。光下载(学)

是不能用的,还必须安装(品),还得用上一阵,才是你的。坐下来,入定,

慢慢学。慢慢做。慢慢想,要不了多久就会发现自己变聪明了!

注意!千万不要急。不要生气,更不能动不动就TMD !

可以弄一本考研题解看看,想想,例如陈文灯。具体方法,分析,归纳,反证等等,

太多,楼上有,不啰嗦啦。 相信你的运气好 !!

阅读全文

与证明题常用方法相关的资料

热点内容
学压腿的正确方法 浏览:393
金花梨施肥的正确方法 浏览:693
有几种锻炼腰椎间盘突出的方法 浏览:636
康熙字典采用哪些注音方法 浏览:350
自测肠癌的方法和技巧 浏览:619
正确擦屁股的方法是 浏览:941
验证是否为纯合子可以用什么方法 浏览:550
如何用简单的方法制作海绵宝宝 浏览:392
用什么方法治打气嗝 浏览:460
股癣有什么好方法断根 浏览:513
rank函数使用方法 浏览:818
诺科壁挂炉使用方法 浏览:393
m6弹簧垫圈硬度检测方法 浏览:611
vv6怠速抖动解决方法 浏览:275
宁德装修检测与治理方法 浏览:458
强迫锻炼的方法视频 浏览:805
职教基础模块上册英语教学方法 浏览:875
牙周炎的图片和治疗方法 浏览:119
三首艾青的诗作并揣摩技巧方法 浏览:626
定量甲基化检测方法 浏览:794