1. 植物蛋白质的提取方法
植物蛋白质的提取方法基本上有这几种:盐析法、有机溶剂法和等电点法。
1、盐析法
原理:盐析法是指在药物溶液中加入大量的无机盐,使某些高分子物质的溶解度降低沉淀析出,而与其他成分分离的方法。盐析法主要用于蛋白质的分离纯化。常作盐析的无机盐有硫酸钠、硫酸镁、硫酸铵等。
2、有机溶剂法
原理:机溶剂引起蛋白质沉淀的主要原因是加入有机溶剂使水溶液的介电常数降低,因而增加了两个相反电荷基团之间的吸引力,促进了蛋白质分子的聚集和沉淀。有机溶剂引起蛋白质沉淀的另一种解释认为与盐析相似,有机溶剂与蛋白质争夺水化水,致使蛋白质脱除水化膜,而易于聚集形成沉淀 。
3、等电点法
原理:在等电点时,蛋白质分子以两性离子形式存在,其分子净电荷为零(即正负电荷相等),此时蛋白质分子颗粒在溶液中因没有相同电荷的相互排斥,分子相互之间的作用力减弱,其颗粒极易碰撞、凝聚而产生沉淀,所以蛋白质在等电点时,其溶解度最小,最易形成沉淀物。
等电点时的许多物理性质如黏度、膨胀性、渗透压等都变小,从而有利于悬浮液的过滤。
2. 蛋白质的提取方法有哪些
众所周知,人的生命活动不能缺少蛋白质,很多食物里面都含有蛋白质成分,正常的饮食可以为身体补充蛋白质。实际上,在生物化学研究领域,蛋白质的分离提取技术具有广泛的应用,想要把蛋白质提取出来非常不容易,需要经过很多工序,并且要找到专业的操作技术,现在有下列这些方法可以提取蛋白质。
1、超速离心法
此法分离和纯化抗原的原理是利用各颗粒在梯度液中沉降速度的不同,使具有不同沉降速度的颗粒处于不同密度梯度层内,达到彼此分离的目的。常用的密度梯度介质有蔗糖、甘油、CsCl等。
用超速离心或梯度密度离心分离和纯化抗原时,除个别成分外,极难将某一抗原成分分离出来,故只用于少数大分子抗原的分离,如IgM、C1q,甲状腺球蛋白等,以及一些比重较轻的抗原物质如载脂蛋白A、B等。多数的中、小分子量蛋白质采用此种方法很难纯化。
2、选择性沉淀法
其原理多根据各蛋白质理化特性的差异,采用各种沉淀剂或改变某些条件促使蛋白质抗原成分沉淀,从而达到纯化的目的。最常用的方法是盐析沉淀法。
盐析法的原理
蛋白质在水溶液中的溶解度取决于蛋白质分子表面离子周围的水分子数目,亦即主要是由蛋白质分子外周亲水基团与水形成水化膜的程度以及蛋白质分子带有电荷的情况决定的。蛋白质溶液中加入中性盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化层减弱乃至消失。同时,中性盐加入蛋白质溶液后由于离子强度发生改变,蛋白质表面的电荷大量被中和,更加导致蛋白质溶解度降低,使蛋白质分子之间聚集而沉淀。由于各种蛋白质在不同盐浓度中的溶解度不同,不同饱和度的盐溶液沉淀的蛋白质不同,从而使之从其他蛋白分离出来。最常用的盐溶液是33%~50%饱和度的硫酸铵。盐析法简单方便,可用于蛋白质抗原的粗提,丙种球蛋白的提取,蛋白质的浓缩等。盐析法提纯的抗原纯度不高,只适用抗原的初步纯化。
3、凝胶层析法
凝胶层析是利用分子筛作用对蛋白质进行分离。凝胶是具有三维空间多孔网状结构的物质,经过适当的溶液平衡后,装入层析柱。一种含有各种分子的样品溶液缓慢地流经凝胶层析柱时,大分子物质不易进入凝胶颗粒的微孔,只能分布于颗粒之间,因此在洗脱时向下移动的速度较快,最先被洗脱。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,洗脱时向下移动的速度较慢,随后被洗脱。因此,蛋白质分子按分子大小被分离。
4、离子交换层析法
离子交换层析的原理是利用一些带离子基团的纤维素或凝胶,吸附交换带相反电荷的蛋白质抗原。由于各种蛋白质的等电点不同,所带的电荷量不同,与纤维素(或凝胶)结合的能力有差别。当梯度洗脱时,逐步增加流动相的离子强度,使加入的离子与蛋白质竞争纤维素上的电荷位置,从而使吸附的蛋白与离子交换剂解离。
在离子交换色谱技术中常用的离子交换剂有以下几种
①具有离子交换基团的纤维素,如羧甲基(CM)纤维素、DEAE-纤维素
②具有离子交换基团的交联葡聚糖、琼脂糖和聚丙烯酰胺
③凝胶合成的高度交联树脂。
5、亲和层析
亲和层析是利用生物大分子的生物特异性,即生物大分子间所具有专一亲和力而设计的层析技术。例如抗原和抗体、酶和酶抑制剂(或配体)、酶蛋白和辅酶、激素和受体、IgG和葡萄球菌蛋白A(SPA)等物质间具有一种特殊的亲和力。例如提纯IgG时,可将SPA吸附在一个惰性的固相基质(如Speharose2B、4B、6B等)上,并制备成层析柱。当样品流经层析柱时,待分离的IgG可与SPA发生特异性结合,其余成分不能与之结合。将层析柱充分洗脱后,改变洗脱液的离子强度或pH值,IgG与固相基质上的SPA解离,收集洗脱液便可得到欲纯化的IgG。
3. 蛋白质提取问题
蛋白质提取方法-------列举10种方法
一、植物组织蛋白质提取方法(summer)
1、根据样品重量(1g样品加入3.5ml提取液,可根据材料不同适当加入),准备提取液放在冰上。
2、把样品放在研钵中用液氮研磨,研磨后加入提取液中在冰上静置(3-4 小时)。
3、用离心机离心8000rpm40min4℃或11100rpm20min4℃
4、提取上清夜,样品制备完成。
蛋白质提取液:300ml
1、1Mtris-HCl(PH8) 45ml
2、甘油(Glycerol)75ml
3、聚乙烯吡咯烷酮(Polyvinylpolypyrrordone)6g
这种方法针对SDS-PAGE,垂直板电泳!
二、
植物组织蛋白质提取方法 (summer)
三氯醋酸—丙酮沉淀法
1、在液氮中研磨叶片
2、加入样品体积3倍的提取液在-20℃的条件下过夜,然后离心(4℃8000rpm以上1小时)弃上清。
3、加入等体积的冰浴丙酮(含0.07%的β-巯基乙醇),摇匀后离心(4℃8000rpm以上1 小时),然后真空
干燥沉淀,备用。
4、上样前加入裂解液,室温放置30 分钟,使蛋白充分溶于裂解液中,然后离心(15℃8000rpm以上1小
时或更长时间以没有沉淀为标准),可临时保存在4℃待用。
5、用Brandford法定量蛋白,然后可分装放入-80℃备用。
药品:
提取液:含10%TCA 和0.07%的β-巯基乙醇的丙酮
裂解液:2.7g 尿素0.2gCHAPS 溶于3ml 灭菌的去离子水中(终体积为5ml),使用前再加入1M 的
DTT65ul/ml。
这种方法针对双向电泳,杂质少,离子浓度小的特点!当然单向电泳也同样适用,只是电泳的条带会减少!
三、
组织:肠黏膜 (newinbio)
目的:WESTERN BLOT检测凋亡相关蛋白的表达
应用TRIPURE 提取蛋白质步骤:
含蛋白质上清液中加入异丙醇:(1.5ml每1mlTRIPURE用量)
倒转混匀,置室温10min
离心:12000 g,10min,4度,弃上清
加入0.3M盐酸胍/95%乙醇:(2ml每1mlTRIPURE 用量)
振荡,置室温20min
离心: 7500g,5 min,4 度,弃上清
重复0.3M盐酸胍/95%乙醇步2 次
沉淀中加入100%乙醇 2ml
充分振荡混匀,置室温20 min
离心: 7500g,5min,4度,弃上清吹干沉淀
1%SDS溶解沉淀
离心:10000g,10min,4度
取上清-20 度保存(或可直接用于WESTERN BLOT)
存在的问题:加入1%SDS 后沉淀不溶解,还是很大的一块,4 度离心后又多了白色沉定,SDS 结晶?测
浓度,含量才1mg/ml左右。
解决:提蛋白试剂盒,另外组织大小适中,要碎,立即加2X BUFFER,然后煮5-10分钟,效果很好的。
四、
lysis solution:(yog)
Protein extraction buffer (Camiolo buffer):
100 ml= (0.075M Potassium Acetate) 0.736g
(0.3M) NaCl 1.753g
(0.1M) L-arginine basic salt 1.742g
(0.01M) EDTA-HCl 0.292g
(0.25%) Triton X-100 250. ul
up to 100 ml with dH20. pH 7.4. Then 0.2 um filter.
1. Freeze tissue in liquid nitrogen.
2. Rinse in PBS then mince.
3. Add 1 ml Camiolo extraction buffer per 100 mg of tissue.
4. Homogenize for 1 minute at 4\\'C.
5. Spin at 3,000. rpm/15 minutes/4\\'C.
6. Remove supernatant and save in another tube.
7. If necessary, dialize the supernatant against PBS with
50mM/L Tris-HCl pH 7.4.
五、
植物材料:水稻苗,叶鞘,根(ynibcas)
1、200 毫克样品置于冰上磨碎
2、加lysis buffer,离心,10000rpm,4度,5min 取上清
3、重复离心5min
lysis buffer:urea np-40 ampholine 2-me pvp-40
六、
蛋白质样品制备(sigma)
秧苗蛋白质样品的提取按Davermal 等(1986)的方法进行。
100mg材料剪碎后加入10mgPVP-40(聚乙烯吡咯烷酮)及少量石英砂,用液氮研磨成粉,加入1.5 ml 10% 三
氯乙酸(丙酮配制,含10mM 即0.07%β-巯基乙醇),混匀,-20℃沉淀1 小时,4℃,15000 r/min离心15
min,弃上清,沉淀复溶于1.5ml冷丙酮(含10 mMβ-巯基乙醇),再于-20℃沉淀1 小时,同上离心弃上清,
(有必要再用80%丙酮(含10 mMβ-巯基乙醇所得沉淀低温冷冻真空抽干。
按每mg干粉加入20μl(可调) UKS液[9.5 M尿素,5mM 碳酸钾,1.25%SDS,0.5%DTT(二硫苏糖醇),
2% Ampholine (Amersham Pharmacia Biotech Inc,pH3.5-10),6% Triton X-100],37℃温育30min,期间搅
动几次,28度 (温度低,高浓度的尿素会让溶液结冰)16000 r/min离心15 min,离心力越大时间长一点
越好!上清即可上样电泳。或者-70 度保存
七、
植物根中蛋白质的抽取(phenol)
(1) sample, 液氮研磨
(2) 装1.5 ml centrifuge 用tube
(3) 加 1M KH2PO4+K2HPO4 700 ul
(4) 12000 rpm, 4度, 10-15minite
(5) 取上层液,蛋白质就在里面
八、
SDS extraction followed by acetone precipitation – simple extraction protocol that does not require phenol.
Recommended start protocol for whole tissue extractions.(hgp)
1. Grind 1 g of fresh tissue to a powder with liquid nitrogen in a mortar and pestle.
2. Add 5 mL of extraction media (0.175 M Tris-HCl, pH 8.8, 5% SDS, 15% glycerol, 0.3 M DTT) directly to
mortar and continue grinding for an additional 30 sec.
3. Filter homogenate through two layers of miracloth into a 50 mL Falcon tube at room temperature.
4. Immediately add 4 volumes of ice cold 100% acetone to filtered homogenate, mix by vortexing and place at -20
C for at least one hour to precipitate proteins.
5. Centrifuge at 5000 g for 15 min to collect precipitated protein, decant supernatant.
6. Gently blot resial acetone from container with Kimwipe and then wash pellet in 15-20 mL of cold 80%
acetone. Be sure to thoroughly break-up pellet by pipetting, vortexing or sonication.
7. Repeat steps 5 and 6.
8. Collect final protein precipitate by centrifugation at 5000 g for 15 min and dry pellet by inverting on Kimwipe
for 15 min at 37 C.
9. Resuspend final pellet in 0.5-1 mL of IEF extraction solution (8 M urea, 2 M thiourea, 2% CHAPS, 2% Triton
X-100, 50 mM DTT, 0.2% pH 3-10 ampholytes) by pipetting and vortexing at 25-30 C. Incubate sample for 1 h at
room temperature with agitation. Do not heat sample under any circumstances as this will lead to carbamylation of
proteins.
10. Centrifuge for 10 min at 12000 g and use supernatant to rehydrate IPG strips.
11. If protein quantitation is necessary, precipitate protein sample with TCA or acetone prior to performing
Bradford or Lowry assay as detergents and recing agents interfere with these assays.
Phenol extraction followed by methanolic ammonium acetate precipitation – an effective protocol for sample
preparation from protein-poor, recalcitrant tissues such as plants (see Hurkman and Tanaka, 1986, Plant
Physiology 81:802-80
九、
材料:细菌蛋白(puc18)
用甲醇提取的,冻干后用缓冲液溶解的。样品缓冲液是一般的。其中含又2%的SDS,20mmol 的2-巯基乙
醇。
十、
线粒体蛋白的提取 (bioon)
Isolation for Mitochondria
Modification by Bioon
Materials and reagents:
homogenizing buffer:
100 mM mannitol
10 mM Tris-HCl buffer (pH 7.5)
5 mM MgCl2
关 于 蛋 白 质
1 mM EGTA
1 mM DTT
leupeptin (0.1 ug/ml)
0.1M Na2CO3
Methods:
- 10*6 Cells were washed with ice-cold PBS and lysed by homogenizing in 1 ml buffer (ice-cold) containing 100
mM mannitol, 10 mM Tris, 5 mM MgCl2, 1 mM EGTA, 1 mM DTT, leupeptin (0.1 ug/ml)
- Subjected to Polytron homogenization for three-four bursts of 3-10 s each at a setting of 6.5.
- Intact cells and nuclei were separated by centrifugation at 120 g for 5 min at 4℃
- Supernatants were centrifuged at 10,000 g for 10 min to collect the heavy (mitochondrial) membrane pellet.
- Cytoplasmic fractions were obtained by centrifuging supernatants at 100,000 g for 30 min.
- Resuspended pellet to 0.25mg/ml in fresh preparation of 0.1M Na2CO3 (pH 11.5)
- Incubated on ice for 30 min.
- Ultracentrifugation at 100000g for 1h at 4℃ to precipitate the mitochondria membrane protein. And the
supernatants are mitochondrial matrix. 0.5mg of proteins in mitochondria can get 100ug of proteins (the
alkali-resistant fractions)
Ref.: PNAS, 2002,99:12825–12830
本方法只适用于提大鼠细胞线粒体蛋白,而不适用于线粒体功能检测
4. 蛋白质提取方法比较
1.机械破碎法(匀浆)
1
利用机械力将细胞破碎。常用的设备:高速组织捣碎机,匀浆器,研钵等。
不同组织的特性来选择不同的方法,动物的胰肝脑一般较柔软,用普通匀浆器研磨即可,而肌及心肌组织较韧,需预先搅碎成匀浆。
5. 蛋白质的提取
稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。
下面着重讨论提取液的pH值和盐浓度的选择。
1、pH值
蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。
2、盐浓度
稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。升浓度为宜。缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。
二、有机溶剂提取法
一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。
6. 用蛋清怎么提取蛋白质
大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。
水溶液提取法
稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解,之后会使蛋白质溶解度降低而产生蛋白质沉淀。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。
7. 蛋白质分离纯化的四种方法
1、盐析法:
盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。
2、有机溶剂沉淀法:
有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。
3、蛋白质沉淀剂:
蛋白质沉淀剂仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。
4、聚乙二醇沉淀作用:
聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。
(7)蛋白质的提取的两种常用方法文库扩展阅读:
蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。
机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20% ,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。
人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸(Amino acid)按不同比例组合而成的,并在体内不断进行代谢与更新。
8. 常用的蛋白质分离纯化方法有哪几种各自的作用原理是什么
分离蛋白质混合物的各种方法主要是根据蛋白质在溶液中的以下性质:1)分子大小;2)溶解度;3)电荷;4)吸附性质;5)对其它分子的生物学亲和力等进行分离。
常见的分离提纯蛋白质的方法有:
1、盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。盐析时,溶液的pH在蛋白质的等电点处效果最好。凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。2、电泳法:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。3、透析法:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。4、层析法:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量。5、分子筛:又称凝胶过滤法,蛋白质溶液加于柱之顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因此不同大小的蛋白质得以分离。6、超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比。
9. 蛋白质如何提取
大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。
(一)水溶液提取法
稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。
(二)有机溶剂提取法
一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。
10. 蛋白质分离方法有哪些,它们的特点各是什么
1.根据分子大小不同进行分离纯化
蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白
质和小分子物质分开,并使蛋白质混合物也得到分离.根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等.透析和超滤是分离蛋白质时常用的方法.透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离.超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程.这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开.它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐.由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小.所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果
离心也是经常和其它方法联合使用的一种分离蛋白质的方法.当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开.例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3].使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心.常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度.可以根据所需密度和渗透压的范围选择合适的密度梯度.密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低.蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白.凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一.凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外.目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等.在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1].凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7].
2.根据溶解度不同进行分离纯化
影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等.但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的.常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等.
等电点沉淀和pH值调节是最常用的方法.每种蛋白质都有自己的等电点,而且在等电点时溶解度最
低;相反,有些蛋白质在一定pH值时很容易溶解.因而可以通过调节溶液的pH值来分离纯化蛋白质.王洪新等[8]研究茶叶蛋白质提取过程发现,pH值为时茶叶蛋白提取效果最好,提取率达到36·8%,初步纯化得率为91·0%.李殿宝[9]在从葵花脱脂粕中提取蛋白质时将蛋白溶液的pH值调到3~4,使目标蛋白于等电点沉淀出来.等电点沉淀法还应用于葡萄籽中蛋白质的提取.李凤英等[10]测得葡萄籽蛋白质的等电点为3·8.他们利用碱溶法提取葡萄籽蛋白质,得到了最佳的提取工艺为:以1×10-5mol·L-1的NaOH溶液,按1∶5的料液比,在40℃搅拌40 min,葡萄籽蛋白质提取率达73·78%.另外还可以利用碱法提取大米蛋白,其持水性、吸油性和起泡性等均优于酶法提取[11].利用酸法提取得到的鲢鱼鱼肉蛋白质无腥味、色泽洁白,蛋白质产率高达90%[12].
蛋白质的盐溶和盐析是中性盐显着影响球状蛋白质溶解度的现象,其中,增加蛋白质溶解度的现象称盐溶,反之为盐析.应当指出,同样浓度的二价离子中性盐,如MgCl2、(NH4)2SO4对蛋白质溶解度影响的效果,要比一价离子中性盐如NaCl、NH4Cl大得多.在葡萄籽蛋白提取工艺中除了可以利用碱溶法还可以利用盐溶法来提取蛋白质,其最佳提取工艺是:以10%NaCl溶液,按1∶25的料液比,在30℃搅拌提取30min,蛋白质提取率为57·25%[10].盐析是提取血液中免疫球蛋白的常用方法,如多聚磷酸钠絮凝法、硫酸铵盐析法,其中硫酸铵盐析法广泛应用于生产.由于硫酸铵在水中呈酸性,为防止其对蛋白质的破坏,应用氨水调pH值至中性.为防止不同分子之间产生共沉淀现象,蛋白质样品的含量一般控制在0·2% ~2·0%.利用盐溶和盐析对蛋白质进行提纯后,通常要使用透析或者凝胶过滤的方法除去中性盐[13].
有机溶剂提取法的原理是:与水互溶的有机溶剂(如甲醇、乙醇)能使一些蛋白质在水中的溶解度显着降低;而且在一定温度、pH值和离子强度下,引起蛋白质沉淀的有机溶剂的浓度不同,因此,控制有机溶剂的浓度可以分离纯化蛋白质.例如,在冰浴中磁力搅拌下,在4℃预冷的培养液中缓慢加入乙醇(-25℃),可以使冰核蛋白析出,从而纯化冰核蛋白[14].由于在室温下,有机溶剂不仅能引起蛋白质的沉淀,而且伴随着变性.因此,通常要将有机溶剂冷却,然后在不断搅拌下加入有机溶剂防止局部浓度过高,蛋白质变性问题就可以很大程度上得到解决.对于一些和脂质结合比较牢固或分子中极性侧链较多、不溶于水的蛋白质,可以用乙醇、丙酮和丁醇等有机溶剂提取,它们有一定的亲水性和较强的亲脂性,是理想的提取液.冷乙醇分离法提取免疫球蛋白最早由Cohn于1949年提出,用于制备丙种球蛋白.冷乙醇法也是目前WHO规程和中国生物制品规程推荐的方法,不仅分辨率高、提纯效果好、可同时分离多种血浆成分,而且有抑菌、清除和灭病毒的作用[15].
萃取是分离和提纯有机化合物常用的一种方法,而双水相萃取和反胶团萃取可以用来分离蛋白质.双水相萃取技术(Aqueous two phase extraction,ATPE)是指亲水性聚合物水溶液在一定条件下形成双水相,由于被分离物在两相中分配的不同,便可实现分离,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取.此方法可以在室温环境下进行,双水相中的聚合物还可以提高蛋白质的稳定性,收率较高.对于细胞内的蛋白质,需要先对细胞进行有效破碎.目的蛋白常分布在上相并得到浓缩,细胞碎片等固体物分布在下相中.采用双水相系统浓缩目的蛋白,受聚合物分子量及浓度、溶液pH值、离子强度、盐类型及浓度的影响[16].
反胶团萃取法是利用反胶团将蛋白质包裹其中而达到提取蛋白质的目的.反胶团是当表面活性剂
在非极性有机溶剂溶解时自发聚集而形成的一种纳米尺寸的聚集体.这种方法的优点是萃取过程中蛋
白质因位于反胶团的内部而受到反胶团的保护.程世贤等[17]就利用反胶团萃取法提取了大豆中的蛋白质.
3.根据电荷不同进行分离纯化
根据蛋白质的电荷即酸碱性质不同分离蛋白质的方法有电泳和离子交换层析两类.
在外电场的作用下,带电颗粒(如不处于等电点状态的蛋白质分子)将向着与其电性相反的电极移动,这
种现象称为电泳.聚丙烯酰胺电泳是一种以聚丙烯酰胺为介质的区带电泳,常用于分离蛋白质.它的优点是设备简单、操作方便、样品用量少.等电聚焦是一种高分辨率的蛋白质分离技术,也可以用于蛋白质的等电点测定.利用等电聚焦技术分离蛋白质混合物是在具有pH梯度的介质中进行的.在外电场作用下各种蛋白质将移向并聚焦在等于其等电点的pH值梯度处形成一个窄条带.孙臣忠等[18]研究了聚丙烯酰胺电泳、等电聚焦电泳和等速提纯电泳在分离纯化蛋白质中的应用.结果发现,聚丙烯酰胺电泳的条带分辨率低,加样量不高;等电聚焦电泳分辨率最高,可以分离同种蛋白的亚成分,加样量最小;等速提纯电泳区带分辨率较高,可将样品分成单一成分,加样量最大.
离子交换层析(Ion exchange chromatography,IEC)是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时结合力大小的差别而进行分离的一种层析方法.离子交换层析中,基质由带有电荷的树脂或纤维素组成.带有正电荷的为阴离子交换树脂;反之为阳离子交换树脂.离子交换层析同样可以用于蛋白质的分离纯化.当蛋白质处于不同的pH值条件下,其带电状况也不同.阴离子交换基质结合带有负电荷的蛋白质,被留在层析柱上,通过提高洗脱液中的盐浓度,将吸附在层析柱上的蛋白质洗脱下来,其中结合较弱的蛋白质首先被洗脱下来.反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来.李全宏等[19]将离子交换层析应用于浓缩苹果汁中蛋白质的提纯.另外,离子交换层析还用于抗凝血蛋白的提取[7].
4. 利用对配体的特异亲和力进行分离纯化
亲和层析是利用蛋白质分子对其配体分子特有的识别能力(即生物学亲和力)建立起来的一种有效的纯化方法.它通常只需一步处理即可将目的蛋白质从复杂的混合物中分离出来,并且纯度相当高.应用亲和层析须了解纯化物质的结构和生物学特性,以便设计出最好的分离条件.近年来,亲和层析技术被广泛应用于靶标蛋白尤其是疫苗的分离纯化,特别是在融合蛋白的分离纯化上,亲和层析更是起到了举足轻重的作用,因为融合蛋白具有特异性结合能力[20].亲和层析在基因工程亚单位疫苗的分离纯化中应用也相当广泛[21].范继业等[22]利用壳聚糖亲和层析提取的抑肽酶比活达到71 428 BAEE·mg-1,纯化回收率达到62·5%.该方法成本较低,吸附剂价格低廉、机械强度高、抗污染能力较强、非特异性吸附较小、可反复使用、适用性广,产品质量稳定.