导航:首页 > 使用方法 > 证明勾股定理常用的方法是

证明勾股定理常用的方法是

发布时间:2022-01-09 13:46:47

Ⅰ 勾股定理的3种证明方法

证法1】(梅文鼎证明)
作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形.
∴ ∠ABC + ∠CBE = 90°
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90°
即 ∠CBD= 90°
又∵ ∠BDE = 90°,∠BCP = 90°,
BC = BD = a.
∴ BDPC是一个边长为a的正方形.
同理,HPFG是一个边长为b的正方形.
设多边形GHCBE的面积为S,则
,
∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2
【证法2】(项明达证明)
作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
过点Q作QP‖BC,交AC于点P.
过点B作BM⊥PQ,垂足为M;再过点
F作FN⊥PQ,垂足为N.
∵ ∠BCA = 90°,QP‖BC,
∴ ∠MPC = 90°,
∵ BM⊥PQ,
∴ ∠BMP = 90°,
∴ BCPM是一个矩形,即∠MBC = 90°.
∵ ∠QBM + ∠MBA = ∠QBA = °,
∠ABC + ∠MBA = ∠MBC = 90°,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2
【证法3】(赵浩杰证明)
作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.
分别以CF,AE为边长做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直线上,
∵CJ=CF=a,CB=CD=c,
∠CJB = ∠CFD = 90°,
∴RtΔCJB ≌ RtΔCFD ,
同理,RtΔABG ≌ RtΔADE,
∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
∴∠ABG = ∠BCJ,
∵∠BCJ +∠CBJ= 90°,
∴∠ABG +∠CBJ= 90°,
∵∠ABC= 90°,
∴G,B,I,J在同一直线上,
所以a^2+b^2=c^2
【证法4】(欧几里得证明)
作三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
BF、CD. 过C作CL⊥DE,
交AB于点M,交DE于点L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面积等于,
ΔGAD的面积等于矩形ADLM
的面积的一半,
∴ 矩形ADLM的面积 =.
同理可证,矩形MLEB的面积 =.
∵ 正方形ADEB的面积
= 矩形ADLM的面积 + 矩形MLEB的面积
∴ 即a的平方+b的平方=c的平方
【证法5】欧几里得的证法
《几何原本》中的证明
在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在正式的证明中,我们需要四个辅助定理如下:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。
其证明如下:
设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的

Ⅱ 勾股定理有几种证明方法

勾股定理的证明有上百种证明方法,下面例句最经典的中国方法:

画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。
左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a^2+b^2=c^2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

Ⅲ 最简单的勾股定理的证明方法是什么

简单的勾股定理的证明方法如下:

拓展资料:

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。



参考资料:勾股定理_网络

Ⅳ 勾股定理的十六种证明方法

加菲尔德证法、加菲尔德证法变式、青朱出入图证法、欧几里得证法、毕达哥拉斯证法、华蘅芳证法、赵爽弦图证法、百牛定理证法、商高定理证法、商高证法、刘徽证法、绉元智证法、梅文鼎证法、向明达证法、杨作梅证法、李锐证法

例,如下图:

设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。

画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。

分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因为AB=FB,BD=BC,所以△ABD≌△FBC。

因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。

因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。

因此四边形BDLK=BAGF=AB²。

同理可证,四边形CKLE=ACIH=AC²。

把这两个结果相加,AB²+AC²=BD×BK+KL×KC

由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。

(4)证明勾股定理常用的方法是扩展阅读


性质:

1、勾股定理的证明是论证几何的发端;

2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值,这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由着名数学家选出的,勾股定理是其中之首。



Ⅳ 证明勾股定理的方法(越多越好)

加油!!
中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。如图所示,我们

图1 直角三角形

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

图2 勾股圆方图

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”

Ⅵ 勾股定理的三种证明方法是什么啊

一,毕达哥拉斯证法
二,赵爽证法
三,将直角三角形与其它三角形拼成直角梯形,然后就根据梯形面积证出勾股定理.

Ⅶ 勾股定理的证明方法 最好带图 5种就够

勾股定理
[编辑本段]
在初二我们将初步学习勾股定理.
勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).

在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方;,即α*α+b*b=c*c
推广:把指数改为n时,等号变为小于号
据考证,人类对这条定理的认识,少说也超过 4000 年

勾股数:是指能组成a^+b^=c^的三个正整数称为勾股数.

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。

勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有着名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。)

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

如此等等。

Ⅷ 勾股定理的最简单的证明方法是什么

简单的勾股定理的证明方法如下:

拓展资料:

勾股定理的使用方法

1、确保三角形是直角三角形。 勾股定理只适用于直角三角形中,所以,在应用定理之前,你需要先确定三角形是否是直角三角形,这一点非常重要。幸好,区分直接三角形和别的三角形的方法只有一个,那就是看一个三角形中是否有一个90度的角。

2、确定变量a,b,c对应的三角形的边。在勾股定理中,a,b表示直角三角形的两条直角边,而c用来表示斜边,即直角对应的那条最长的边。所以,先给两条直角边分别标注上a,b(具体的对应关系没有要求),而斜边标注上c。

3、确定你所要求的边。使用勾股定理可以求出直角三角形的任意一条边的长度,但前提是知道另外两条边的长度。先确定哪一条边的长度是未知的——a,b或者c。

4、代入。将两条已知边的长度带入到公式a2 + b2 = c2中,其中a和b对应的是两直角边的长度,而c代表斜边长度。在上面的例子中,我们知道一条直角边和斜边的长度(3和5),然后将3和5代入到公式中,有32 + b2 = 2。

5、计算平方。首先,计算两条已知边长度的平方值。或者,你也可以先不计算出来,然后保留平方,带到式子中直接计算平方和。在上述例子中,3和5的平方分别是9和25,所以方程可以改写为9 + b2 = 25。

6、将未知变量移到等号一边。如果有必要的话,运用基本的代数操作,将未知变量移动到等号一侧,而将已知变量移动到等号的另一侧。如果你要求的是斜边长,那么就不需要再移动变量了。在上述例子中,方程式是9 + b2 = 25。两边同时减去9,等式变为b2= 16。

7、求开方。现在等式两边一边是数字,另一边是变量,然后同时求两边的平方根。在上述例子中b2 = 16,两边同时求平方根,有b = 4。因此,未知边的长度就是4。

Ⅸ 有哪些证明勾股定理的方法

还有的方法就是等面积法,就是利用图形的变化来证明;
也可以利用相似三角形来证明勾股定理。
还有传说中毕达哥拉斯的证法和美国第20任总统茄菲尔德的证法。
勾股定理在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理。数学公式中常写作a^2+b^2=c^2

阅读全文

与证明勾股定理常用的方法是相关的资料

热点内容
56x49的简便计算方法 浏览:517
苹果7下载的铃声在哪里设置方法 浏览:937
56除以25的计算方法 浏览:15
找等量关系的常用方法 浏览:22
家用dsp与功放的连接方法 浏览:670
长帝烤箱的使用方法图 浏览:398
电脑文件出现乱码修复方法 浏览:230
刮胡刀磨刀的正确方法与技巧 浏览:314
木瓜花作用及食用方法 浏览:419
成功不是因为快而是因为有方法是什么意思 浏览:372
怎么提高短视频质量方法 浏览:593
叶轮式增氧机的安装方法 浏览:228
如何提炼自己的教学特色及方法 浏览:5
饲料中硝态氮检测方法 浏览:171
日产天籁行车电脑使用方法 浏览:666
站桩的背后训练方法视频 浏览:229
窗户防盗栏安装方法 浏览:939
真假墨玉手串鉴别方法 浏览:786
电脑杀毒前获得权限的方法 浏览:558
简单的漫画制作方法 浏览:71