导航:首页 > 使用方法 > 求数列an的常用方法

求数列an的常用方法

发布时间:2022-01-09 12:33:21

❶ 数列中求An的方法有多少种

一,公式法
S1 (n=1), an= S -S (n≥2). n n-1 -
二,迭加法
若 an+1=an+f(n), 则: an=a1+ k=2 (ak-ak-1)=a1+ k=2 f(k-1)=a1+ k=1 f(k). ∑∑ ∑ n n n-1 -
三,叠乘法
若 an+1=f(n)an, 则: a2 a3 an an=a1 a a … a =a1f(1)f(2)…f(n-1)(n≥2). … n-11 2
四,化归法
通过恰当的恒等变形, 如配方,因式分解,取对数, 通过恰当的恒等变形 如配方,因式分解,取对数,取倒 数等, 转化为等比数列或等差数列. 数等 转化为等比数列或等差数列 (1)若 an+1=pan+q, 则: an+1-λ=p(an-λ). 若 pan 1 r 1 q (2)若 an+1= r+qa , 则: a = p a + p . 若 n+1 n n an+1 an q(n) (3)若an+1=pan+q(n), 则: n+1 = pn + n+1 . 若 p p (4)若 (4)若 an+1=panq, 则: lgan+1=qlgan+lgp.
五,归纳法
先计算数列的前若干项, 通过观察规律, 猜想通项公式, 先计算数列的前若干项 通过观察规律 猜想通项公式 进而用数学归纳法证之. 进而用数学归纳法证之 满足: 例 已知数列 {an} 满足 a1=1, an+1 =2an+3×2n-1, 求 {an} 的通项 × 公式. 公式 a =(3n-1)×2n-2 - × n

❷ an有几种求法

数列通项公式的几种求法

数列通项公式直接表述了数列的本质,是给出数列的一种重要方法。数列通项公式具备两大功能,第一,可以通过数列通项公式求出数列中任意一项;第二,可以通过数列通项公式判断一个数是否为数列的项以及是第几项等问题;因此,求数列通项公式是高中数学中最为常见的题型之一,它既考察等价转换与化归的数学思想,又能反映学生对数列的理解深度,具有一定的技巧性,是衡量考生数学素质的要素之一,因而经常渗透在高考和数学竞赛中。本文分别介绍几种常见的数列通项的求法,以期能给读者一些启示。

一、常规数列的通项
例1:求下列数列的通项公式
(1)2(22—1),3(32—1),4(42—1),5(52—1),…
(2)-1×2(1),2×3(1),-3×4(1),4×5(1),…
(3)3(2),1,7(10),9(17),11(26),…
解:(1)an=n(n2—1) (2)an= n(n+1)((-1)n) (3) an=2n+1(n2+1)
评注:认真观察所给数据的结构特征,找出an与n的对应关系,正确写出对应的表达式。

二、等差、等比数列的通项
直接利用通项公式an=a1+(n-1)d和an=a1qn-1写通项,但先要根据条件寻求首项、公差和公比。

三、摆动数列的通项
例2:写出数列1,-1,1,-1,…的一个通项公式。
解:an=(-1)n-1

变式1:求数列0,2,0,2,0,2,…的一个通项公式。
分析与解答:若每一项均减去1,数列相应变为-1,1,-1,1,…
故数列的通项公式为an=1+(-1)n

变式2:求数列3,0,3,0,3,0,…的一个通项公式。
分析与解答:若每一项均乘以3(2),数列相应变为2,0,2,0,…
故数列的通项公式为an=2(3)[1+(-1)n-1 ]
变式3:求数列5,1,5,1,5,1,…的一个通项公式。
分析与解答1:若每一项均减去1,数列相应变为4,0,4,0,…
故数列的通项公式为an=1++2×3(2)[1+(-1)n-1 ]=1+3(4)[1+(-1)n-1 ]
分析与解答2:若每一项均减去3,数列相应变为2,-2,2,-2,…
故数列的通项公式为an=3+2(-1)n-1

四、循环数列的通项
例3:写出数列0.1,0.01,0.001,0.0001,…的一个通项公式。
解:an= 10n(1)
变式1:求数列0.5,0.05,0.005,…的一个通项公式。
解:an= 10n(5)
变式2:求数列0.9,0.99,0.999,…的一个通项公式。
分析与解答:此数列每一项分别与数列0.1,0.01,0.001,0.0001,…的每一项对应相加得到的项全部都是1,于是an=1- 10n(1)

变式3:求数列0.7,0.77,0.777,0.7777,…的一个通项公式。
解:an= 9(7)(1- 10n(1))

例4:写出数列1,10,100,1000,…的一个通项公式。
解:an=10n-1

变式1:求数列9,99,999,…的一个通项公式。
分析与解答:此数列每一项都加上1就得到数列10,100,1000,… 故an=10n-1。

变式2:写出数列4,44,444,4444…的一个通项公式。
解:an= 9(4)(10n-1)
评注:平日教与学的过程中务必要对基本的数列通项公式进行过关,这就需要提高课堂教与学的效率,多加总结、反思,注意联想与对比分析,做到触类旁通,也就无需再害怕复杂数列的通项公式了。

五、通过等差、等比数列求和来求通项
例5:求下列数列的通项公式
(1)0.7,0.77,0.777,… (2)3,33,333,3333,…
(3)12,1212,121212,… (4)1,1+2,1+2+3,…
解:(1)an=file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image1.wmf=7×file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image2.wmf=7×(0.1+0.01+0.001+…+file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image3.wmf)
=7×(10(1)+102(1)+103(1)+…+10n(1))==9(7)(1-10n(1))
(2)an=file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image4.wmf=3×file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image5.wmf=3×(1+10+100+…+10n)=3×1-10(1-10n)=3(1)(10n-1)
(3)an=file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image6.wmf=12×(1+100+10000+…+100n-1)=12×1-100(1-100n)=33(4)(102n-1)
(4)an=1+2+3+…n=2(n(n+1))

评注:关键是根据数据的变化规律搞清楚第n项的数据特点。

六、用累加法求an=an-1+f(n)型通项

例6:(1)数列{an}满足a1=1且an=an-1+3n-2(n≥2),求an。
(2)数列{an}满足a1=1且an=an-1+2n(1)(n≥2),求an。
解:(1)由an=an-1+3n-2知an-an-1=3n-2,记f(n)=3n-2= an-an-1
则an= (an-an-1)+(an-1-an-2)+(an-2-an-3)+…(a2-a1)+a1
=f(n)+ f(n-1)+ f(n-2)+…f(2)+ a1
=(3n-2)+[3(n-1)-2]+ [3(n-2)-2]+ …+(3×2-2)+1
=3[n+(n-1)+(n-2)+…+2]-2(n-1)+1
=3×2((n+2)(n-1))-2n+3=2(3n2-n)
(2)由an=an-1+2n(1)知an-an-1=2n(1),记f(n)=2n(1)= an-an-1
则an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…(a2-a1)+a1
=f(n)+ f(n-1)+ f(n-2)+…f(2)+ a1
=2n(1)+2n-1(1)+2n-2(1)+…+22(1)+1=2(1)-2n(1)
评注:当f(n)=d(d为常数)时,数列{an}就是等差数列,教材对等差数列通项公式的推导其实就是用累加法求出来的。

七、用累积法求an= f(n)an-1型通项
例7:(1)已知数列{an}满足a1=1且an=n(2(n-1))an—1(n≥2),求an

(2)数列{an}满足a1=2(1)且an=2n(1)an—1,求an
解:(1)由条件 an—1(an)=n(2(n-1)),记f(n)=n(2(n-1))
an= an—1(an)· an—2(an-1)·… a1(a2)·a1=f(n)f(n-1)f(n-2)…f(2)f(2)a1

=n(2(n-1))·n-1(2(n-2))·n-2(2(n-3))·…3(2×2)·2(2×1)·1=n(2n-1)
(2)an= an—1(an)· an—2(an-1)·… a1(a2)·a1=2n(1)·2n-1(1)…22(1)·2(1)=21+2+…+n(1)=2- 2(n(n+1))
评注:如果f(n)=q(q为常数),则{an}为等比数列,an= f(n)an—1型数列是等比数列的一种推广,教材中对等比数列通项公式地推导其实正是用累积法推导出来的。

八、用待定系数法求an=Aan-1+B型数列通项
例8:数列{an}满足a1=1且an+1+2an=1,求其通项公式。
解:由已知,an+1+2an=1,即an=-2 an—1+1
令an+x=-2(an-1+x),则an=-2 an-1-3x,于是-3x=1,故x=-3(1)
∴ an-3(1)=-2(an-1-3(1))
故{ an-3(1) }是公比q为-2,首项为an-3(1)=3(2)的等比数列
∴an-3(1)=3(2)(-2)n-1=3(1-(-2)n)
评注:一般地,当A≠1时令an+x=A(an-1+x)有an=A an-1+(A-1)x,则有
(A-1)x=B知x=A-1(B),从而an+A-1(B)=A(an-1+A-1(B)),于是数列{an+A-1(B)}是首项为a1+A-1(B)、公比为A的等比数列,故an+A-1(B)=(a1+A-1(B))An-1,从而
an=(a1+A-1(B))An-1-A-1(B);特别地,当A=0时{an}为等差数列;当A≠0,B=0时,数列{an}为等比数列。

推广:对于an=A an-1+f(n)(A≠0且A∈R)型数列通项公式也可以用待定系数法求通项公式。
例9:数列{an}满足a1=1且an=2an-1+3n(1)(n≥2),求an。
解:令an+x·3n(1)=2(an+x·3n-1(1))则an=2an-1+ 2x·3n-1(1)-x·3n(1)=3(5)x·3n-1(1)=5x·3n(1)
而由已知an=2an-1+3n(1)故5x=1,则x=5(1)。故an+5(1)·3n(1)=2(an-1+5(1)·3n-1(1))
从而{an+5(1)·3n(1)}是公比为q=2、首项为a1+5(1)·3(1)=15(16)的等比数列。
于是an+5(1)·3n(1)=15(16)×2n-1,则an=15(16)×2n-1-5(1)·3n(1)=15(1)(2n+3-3n-1(1))
评注:一般情况,对条件an=Aan-1+f(n)而言,可设an+g(n)=A[an-1+g(n-1)],则有Ag(n-1)-g(n)=f(n),从而只要求出函数g(n)就可使数列{ an+g(n)}为等比数列,再利用等比数列通项公式求出an。值得注意的是an+g(n)与an-1+g(n-1)中的对应关系。特别地,当f(n)=B(B为常数)时,就是前面叙述的例8型。
这种做法能否进一步推广呢?对于an=f(n)an-1+g(n)型数列可否用待定系数法求通项公式呢?
我们姑且类比做点尝试:令an+k(n)=f(n)[an-1+k(n-1)],展开得到
an =f(n)an-1+f(n)k(n-1)-k(n),从而f(n)k(n-1)-k(n)= g(n),理论上讲,通过这个等式k(n)可以确定出来,但实际操作上,k(n)未必能轻易确定出来,请看下题:
数列{an}满足a1=1且an=2n(n)an-1+n+1(1),求其通项公式。
在这种做法下得到2n(n)k(n-1)-k(n)=n+1(1),显然,目前我们用高中数学知识还无法轻易地求出k(n)来。

九、通过Sn求an
例10:数列{an}满足an =5Sn-3,求an。
解:令n=1,有a1=5an-3,∴a1=4(3)。由于an =5Sn-3………①
则 an-1 =5 Sn-1-3………②
①-②得到an-an-1=5(Sn-Sn-1) ∴an-an-1 =5an

故an=-4(1)an-1,则{an}是公比为q=-4(1)、首项an=4(3)的等比数列,则an=4(3)(-4(1))n-1

评注:递推关系中含有Sn,通常是用Sn和an的关系an=Sn-Sn-1(n≥2)来求通项公式,具体来说有两类:一是通过an=Sn-Sn-1将递推关系揭示的前n项和与通项的关系转化为项与项的关系,再根据新的递推关系求出通项公式;二是通过an=Sn-Sn-1将递推关系揭示的前n项和与通项的关系转化为前n项和与前n-1项和的关系,再根据新的递推关系求出通项公式

十、取倒数转化为等差数列

例11:已知数列{an}满足a1=1且a
n+1=
an+2(2an),求an。
解:由a
n+1=
an+2(2an)有 an+1(1)= 2an(an+2)= 2(1)+an(1) 即an+1(1)-an(1)=2(1)
所以,数列{an(1)}是首项为a1(1)=1、公差为d=2(1)的等差数列
则an(1)=1+(n-1)2(1)=2(n+1) 从而an=n+1(2)
评注:注意观察和分析题目条件的结构特点,对所给的递推关系式进行变形,使与所求数列相关的数列(本例中数列{an(1)})是等差或等比数列后,只需解方程就能求出通项公式了。

十一、构造函数模型转化为等比数列

例12:已知数列{an}满足a1=3且a
n+1=
(an-1)2+1,求an。
解:由条件a
n+1=
(an-1)2+1得a
n+1-1=
(an-1)2

两边取对数有lg(a
n+1-1)=lg((an-1)2)=2lg(an-1) 即
故数列{ lg(an-1)}是首项为lg(a1-1)=lg2、公比为2的等比数列
所以,lg(an-1)=lg2·2n-1=lgfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image7.wmf
则an-1=file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image8.wmf 即an=file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image9.wmf+1

评注:通过构造对数函数达到降次的目的,使原来的递推关系转化为等比数列进行求。

十二、数学归纳法
例13:数列{an}满足a1=4且a
n=4-
an-1(4)(n≥2),求an。
解:通过递推关系求出数列前几项如下
a1=4=2+1(2) a2=4-
a1(4)=3=2+2(2) a3=4-
a2(4)=3(8)=2+3(2)
a4=4-
a3(4)=2(5)=2+4(2) a5=4-
a4(4)=5(12)=2+5(2) a6=4-
a5(4)=3(7)=2+6(2)
猜想:通项公式为an=2+n(2)。下用归纳法给出证明
显然,当n=1时,a1=4=2+1(2),等式成立
假设当n=k时,等式成立,即ak=2+k(2)
则当n=k+1时,a
k+1=4-
ak(4)=4-
k(2)) k(2)=4-k+1(2k)=2+2-k+1(2k)=2+k+1(2)
由归纳法原理知,对一切n∈N+都有an=2+n(2)。

评注:先根据递推关系求出前几项,观察数据特点,猜想、归纳出通项公式,再用数学归纳法给出证明。

十三、综合应用
例14:已知各项为正的数列{a
n}满足a1=1且a
n2=a
n-12+2(n≥2),求an。
解:由a
n2=a
n-12+2知a
n2-a
n-12=2
则数列{a
n2}是公差为2、首项为a
12=1的等差数列。
故 a
n2=1+2(n-1)=2n-1 即an=

例15:数列{a
n}满足a1=a2=5且a
n+1=a
n+6a
n-1(n≥2),求an。
解:设a
n+1+λa
n=μ(a
n+λa
n-1),则a
n+1=(μ-λ)a
n+μλa
n-1
而a
n+1=a
n+6a
n-1 则file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image10.wmf 解得file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image11.wmf或file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image12.wmf
当λ=2且μ=3时a
n+1+2a
n=3(a
n+2a
n-1),即
n+1+2a
n, a
n+2a
n-1) =3
则数列{a
n+2a
n-1}是公比为3、首项为a
2+2a
1=15的等比数列。
于是,a
n+2a
n-1=15×3n-1=5×3n 则a
n=-2a
n-1+5×3n

令a
n+x·3n =-2(a
n-1+x·3n-1 ) 则a
n=-2a
n-1-x·3n 故x=-1
于是,a
n-3n =-2(a
n-1-3n-1 )
从而{a
n-3n }是公比为-2、首项为a
1-3=2的等比数列。
所以,a
n-3n =2×(-2)n-1 则a
n=3n+2×(-2)n-1=3n-(-2)n
当λ=-3且μ=-2时,同理可求得a
n=3n-(-2)n

于是,数列{a
n}的通项公式为a
n=3n-(-2)n

小结:本文只是介绍了几种常见的求数列通项公式的方法,可以看到,求数列(特别是以递推关系式给出的数列)通项公式的确具有很强的技巧性,与我们所学的基本知识与技能、基本思想与方法有很大关系,因而在平日教与学的过程中,既要加强基本知识、、基本方法、基本技能和基本思想的学习,又要注意培养和提高数学素质与能力和创新精神。这就要求无论教师还是学生都必须提高课堂的教与学的效率,注意多加总结和反思,注意联想和对比分析,做到触类旁通,将一些看起来毫不起眼的基础性命题进行横向的拓宽与纵向的深入,通过弱化或强化条件与结论,揭示出它与某类问题的联系与区别并变更为出新的命题。这样无论从内容的发散,还是解题思维的深入,都能收到固本拓新之用,收到“秀枝一株,嫁接成林”之效,从而有利于形成和发展创新的思维。

❸ 求数列{an}的通项公式的方法,有多少种

解:
求数列{an}的通项公式的方法,如下:
一,公式法
S1 (n=1), an= S -S (n≥2). n n-1 -
二,迭加法
若 an+1=an+f(n), 则: an=a1+ k=2 (ak-ak-1)=a1+ k=2 f(k-1)=a1+ k=1 f(k). ∑∑ ∑ n n n-1 -
三,叠乘法
若 an+1=f(n)an, 则: a2 a3 an an=a1 a a … a =a1f(1)f(2)…f(n-1)(n≥2). … n-11 2
四,化归法
通过恰当的恒等变形,
如配方,因式分解,取对数, 通过恰当的恒等变形 如配方,因式分解,取对数,取倒 数等, 转化为等比数列或等差数列. 数等
转化为等比数列或等差数列 (1)若 an+1=pan+q, 则: an+1-λ=p(an-λ). 若 pan 1 r 1 q (2)若
an+1= r+qa , 则: a = p a + p . 若 n+1 n n an+1 an q(n) (3)若an+1=pan+q(n),
则: n+1 = pn + n+1 . 若 p p (4)若 (4)若 an+1=panq, 则: lgan+1=qlgan+lgp.
五,归纳法
先计算数列的前若干项,
通过观察规律, 猜想通项公式, 先计算数列的前若干项 通过观察规律 猜想通项公式 进而用数学归纳法证之. 进而用数学归纳法证之 满足: 例
已知数列 {an} 满足 a1=1, an+1 =2an+3×2n-1, 求 {an} 的通项 × 公式. 公式 a =(3n-1)×2n-2 -
× n

❹ 求数列通项公式的几种常见方法

一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an
1=an
2(n1),求该数列的通项公式an。
解:由an
1=an
2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
s1
(n=1)
sn-sn-1
(n2)
例:已知数列{an}的前n项和sn=n2-9n,第k项满足5
(a)
9
(b)
8
(c)
7
(d)
6
解:∵an=sn-sn-1=2n-10,∴5<2k-10<8
∴k=8

(b)
此类题在解时要注意考虑n=1的情况。
三、已知an与sn的关系时,通常用转化的方法,先求出sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和sn满足an=snsn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=snsn-1(n2),而an=sn-sn-1,snsn-1=sn-sn-1,两边同除以snsn-1,得---=-1(n2),而-=-=-,∴{-}
是以-为首项,-1为公差的等差数列,∴-=
-,sn=
-,
再用(二)的方法:当n2时,an=sn-sn-1=-,当n=1时不适合此式,所以,
-
(n=1)
-
(n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an
1、an-1的递推式子,常用累加、累积的方法求通项公式。
例:设数列{an}是首项为1的正项数列,且满足(n
1)an
12-nan2
an
1an=0,求数列{an}的通项公式
解:∵(n
1)an
12-nan2
an
1an=0,可分解为[(n
1)an
1-nan](an
1
an)=0
又∵{an}是首项为1的正项数列,∴an
1
an
≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴
-=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈n*)
五、用构造数列方法求通项公式
题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有
an(或sn)的式子,使其成为等比或等差数列,从而求出an(或sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。
例:已知数列{an}中,a1=2,an
1=(--1)(an
2),n=1,2,3,……
(1)求{an}通项公式
(2)略
解:由an
1=(--1)(an
2)得到an
1--=
(--1)(an--)
∴{an--}是首项为a1--,公比为--1的等比数列。
由a1=2得an--=(--1)n-1(2--)
,于是an=(--1)n-1(2--)
-
又例:在数列{an}中,a1=2,an
1=4an-3n
1(n∈n*),证明数列{an-n}是等比数列。
证明:本题即证an
1-(n
1)=q(an-n)
(q为非0常数)
由an
1=4an-3n
1,可变形为an
1-(n
1)=4(an-n),又∵a1-1=1,
所以数列{an-n}是首项为1,公比为4的等比数列。
若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。
又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略
解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1

❺ 求数列通项公式an和前n项和Sn的方法

1、等差数列

an=a1+(n-1)d;an=Sn-S(n-1)。

Sn=a1n+((n*(n-1))/2)d。

2、等比数列

an=a1*q^(n-1);an=Sn/S(n-1)。

Sn=(a1(1-q^n))/1-q。

按一定次序排列的一列数称为数列,而将数列{a} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应a 项的值。

概念

不妨将数列递推公式中同时含有an和an+1的情况称为一阶数列,显然,等差数列的递推式为

an=an-1+ d , 而等比数列的递推式为 an=an-1* q ; 这二者可看作是一阶数列的特例。故可定义一阶递归数列形式为: an+1= A *an+ B ········☉ , 其中A和B 为常系数。那么,等差数列就是A=1 的特例,而等比数列就是B=0 的特例。

❻ 求数列an的过程及答案

对已知进行整理。。Sn=-2an
-1
Sn_1=-2an_1-1
an=Sn-Sn_1
最后得出3an=2an_1
an/an_1=2/3,数列为等比数列,an=1/2(2/3)的n-1次方
Sn=3/4【1-(2/3)的n次方】
Tn=3/4n【1-(2/3)的n次方】你把n放在括号里。。。里面是一个等差减一个等差乘等比。。。后面等差乘等比用错位想减法。。自己算去吧。。。过程有省略

❼ 数列方法

求数列通项公式常用以下几种方法:

一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。

例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。

解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。

二、已知数列的前n项和,用公式

S1 (n=1)

Sn-Sn-1 (n2)

例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5

(A) 9 (B) 8 (C) 7 (D) 6

解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)

此类题在解时要注意考虑n=1的情况。

三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。

例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。

解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,

再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,

- (n=1)

- (n2)

四、用累加、累积的方法求通项公式

对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。

例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式

解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0

又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,

又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)

❽ 求数列an的通项公式有哪几种方法

①等差数列和等比数列有通项公式

②累加法:用于递推公式为且f(n)可求积

④构造法:将非等差数列、等比数列,转换成相关的等差等比数列

⑤错位相减法:用于形如数列由等差×等比构成:如an=n·2^n

❾ 数列求An的几种方法

分组求和 裂项求和 错位相减

阅读全文

与求数列an的常用方法相关的资料

热点内容
找等量关系的常用方法 浏览:22
家用dsp与功放的连接方法 浏览:670
长帝烤箱的使用方法图 浏览:398
电脑文件出现乱码修复方法 浏览:230
刮胡刀磨刀的正确方法与技巧 浏览:314
木瓜花作用及食用方法 浏览:419
成功不是因为快而是因为有方法是什么意思 浏览:372
怎么提高短视频质量方法 浏览:593
叶轮式增氧机的安装方法 浏览:228
如何提炼自己的教学特色及方法 浏览:5
饲料中硝态氮检测方法 浏览:171
日产天籁行车电脑使用方法 浏览:666
站桩的背后训练方法视频 浏览:229
窗户防盗栏安装方法 浏览:939
真假墨玉手串鉴别方法 浏览:786
电脑杀毒前获得权限的方法 浏览:558
简单的漫画制作方法 浏览:71
未焊透裂纹的检测方法 浏览:436
橡胶品尺寸测量方法 浏览:562
市政井开挖土方量计算方法 浏览:823