1. 机器学习该怎么入门
机器学习入门最佳的方法其实就是理论和代码一起学习。一边看相应的理论推导,一边看并且实践经典代码。所以,为了更快入门,我推荐你最好能够懂点MATLAB或者是Python语言。
Matlab和Python说实话做高端的机器学习肯定是不推荐的,但是如果你想的是机器学习快速入门,那这两门语言绝对是绝佳选择。
第一步
有了上述基础后,你可以开始看点机器学习的相关内容了。我看很多人推荐elements of machine learning。我想说,你想让一个基础为零的人去看这本书,真的合适吗???
所以,我推荐的是Machine Learning in action,(这里面的完成语言为Python)这是英文版本的。当然如果你觉得英文对你是一个完全过不去的坎,(虽然我建议做技术的人都必须至少要看得懂英文)现在有中文版本,叫“机器学习实践”。
这本书用尽量少的公式把机器学习的基本算法都过了一遍,而且还讲得很清楚,更为重要的是他将公式和代码结合了起来。因此,你的机器学习并没有那么的抽象了,你知道算法里的公式如何的转化为代码。
所以,第一步,你可以耐着性子将这本书看完。反正我当时,把书中的代码自己敲了一次,虽然代码有的下载,你也可以选择只是把代码看懂完事。但我还是建议,自己敲一次,运行运行,这样你会得到不一样的体会。
第二步
学习Coursera上面Andrew Ng老师的machine learning的课程。这门课造福了众多机器学习的入门者,不仅仅是因为课程全面,内容由浅入深。
总之,一定要耐着性子过一遍甚至是几面这个课程。
第三步
这时候你已经对机器学习很多简单的算法比较清楚了,但是可能还没有一种大的全局观。所以,我建议大家可以看看这两本中文教材。周志华老师的西瓜书《机器学习》和李航老师的《统计学习方法》。
在前沿部分和第一到第三步的内容,如果你能按照这几步走下来,入门是肯定可以的。至于后面的机器学习精通部分,我也只能说:Good Luck and Have Fun
2. 机器学习一般常用的算法有哪些
机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。
一、线性回归
一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。
二、Logistic 回归
它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。
三、线性判别分析(LDA)
在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。
四、决策树
决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。
五、朴素贝叶斯
其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。
六、K近邻算法
K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。
七、Boosting 和 AdaBoost
首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显着的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。
八、学习向量量化算法(简称 LVQ)
学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求
3. 既然人工智能未必都是通过机器学习的方式实现的,那么除了机器学习的方法还有哪些实现人工智能的方法
用Python做深度学习。感兴趣可以搜搜视频课程,人工智能包含机器学习,机器学习包含深度学习。
4. 第六讲.怎样选择机器学习方法
图片是 coursera 上机器学习公开课中的截图,简单说一下: 如果特征数量远大于训练样本数,则使用逻辑回归或线性核方法的SVM 如果特征数较小,而样本数量相对较多,可以考虑高斯核方法的SVM 如果特征数少儿样本数极大,可以考虑增加一些特征
5. 机器学习有哪些学习方法
在继续学,我感觉有一些特定的方式来完成你的思想思维以及思想作为。
6. 机器学习:几种常见的学习方法
1、有准备的去听,也就是说听课前要先预习,找出不懂的知识、发现问题,带着知识点和问题去听课会有解惑的快乐,也更听得进去,容易掌握;
2、参与交流和互动,不要只是把自己摆在“听”的旁观者,而是“听”的参与者,积极思考老师讲的或提出的问题,能回答的时候积极回答(回答问题的好处不仅仅是表现,更多的是可以让你注意力更集中)。
3、听要结合写和思考。纯粹的听很容易懈怠,能记住的点也很少,所以一定要学会快速的整理记忆。
7. 经典的机器学习方法
机器学习:一种实现人工智能的方法
机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。
举个简单的例子,当我们浏览网上商城时,经常会出现商品推荐的信息。这是商城根据你往期的购物记录和冗长的收藏清单,识别出这其中哪些是你真正感兴趣,并且愿意购买的产品。这样的决策模型,可以帮助商城为客户提供建议并鼓励产品消费。
传统的机器学习算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。这篇文章将对常用算法做常识性的介绍,没有代码,也没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的。
决策树
根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。
8. 目前最流行的机器学习算法是什么
毫无疑问,机器学习在过去几年越来越受欢迎。由于大数据是目前技术行业最热门的趋势,机器学习是非常强大的,可以根据大量数据进行预测或计算推理。
如果你想学习机器算法,要从何下手呢?
监督学习
1. 决策树:决策树是一种决策支持工具,使用的决策及其可能产生的后果,包括随机事件的结果,资源消耗和效用的树状图或模型。
从业务决策的角度来看,决策树是人们必须要选择是/否的问题,以评估大多数时候作出正确决策的概率。它允许您以结构化和系统的方式来解决问题,以得出逻辑结论。
2.朴素贝叶斯分类:朴素贝叶斯分类器是一种简单的概率分类器,基于贝叶斯定理,其特征之间具有强大(朴素)的独立性假设。
特征图像是方程 - P(A | B)是后验概率,P(B | A)是似然度,P(A)是类先验概率,P(B)是预测先验概率。
一些现实世界的例子是:
判断邮件是否为垃圾邮件
分类技术,将新闻文章氛围政治或体育类
检查一段表达积极情绪或消极情绪的文字
用于面部识别软件
3.普通最小二乘回归:如果你了解统计学,你可能已经听说过线性回归。最小二乘法是一种执行线性回归的方法。
您可以将线性回归视为拟合直线穿过点状分布的任务。有多种可能的策略可以做到这一点,“普通最小二乘法”策略就像这样 -你可以画一条线,然后把每个数据点,测量点和线之间的垂直距离,添加上去;拟合线将是距离总和的尽可能小的线。
线性是指您正在使用的模型来迎合数据,而最小二乘可以最小化线性模型误差。
4.逻辑回归: Logistic回归是一个强大的统计学方法,用一个或多个解释变量建模二项式结果。它通过使用逻辑函数估计概率,来衡量分类因变量与一个或多个独立变量之间的关系,后者是累积逻辑分布。
逻辑回归用于生活中:
信用评级
衡量营销活动的成功率
预测某一产品的收入
某一天会有地震吗
5.支持向量机: SVM是二元分类算法。给定N维空间中两种种类型的点,SVM生成(N-1)维的超平面将这些点分成2组。
假设你有一些可以线性分离的纸张中的两种类型的点。SVM将找到一条直线,将这些点分成两种类型,并尽可能远离所有这些点。
在规模上,使用SVM解决的一些特大的问题(包括适当修改的实现)是:广告、人类基因剪接位点识别、基于图像的性别检测,大规模图像分类...
6.集成方法:集成方法是构建一组分类器的学习算法,然后通过对其预测进行加权投票来对新的数据点进行分类。原始的集成方法是贝叶斯平均法,但更新的算法包括纠错输出编码、bagging和boosting。
那么集成方法如何工作,为什么它们优于单个模型?
均衡偏差:如果你均衡了大量的倾向民主党的投票和大量倾向共和党的投票,你总会得到一个不那么偏颇的结果。
降低方差:集合大量模型的参考结果,噪音会小于单个模型的单个结果。在金融领域,这被称为投资分散原则(diversification)——一个混搭很多种股票的投资组合,比单独的股票更少变故。
不太可能过度拟合:如果您有单个模型不完全拟合,您以简单的方式(平均,加权平均,逻辑回归)结合每个模型建模,那么一般不会发生过拟合。
无监督学习
7. 聚类算法:聚类是对一组对象进行分组的任务,使得同一组(集群)中的对象彼此之间比其他组中的对象更相似。
每个聚类算法是不同的,比如:
基于Centroid的算法
基于连接的算法
基于密度的算法
概率
降维
神经网络/深度学习
8. 主成分分析: PCA是使用正交变换将可能相关变量的观察值转换为主成分的线性不相关变量值的一组统计过程。
PCA的一些应用包括压缩、简化数据、便于学习、可视化。请注意,领域知识在选择是否继续使用PCA时非常重要。数据嘈杂的情况(PCA的所有组件都有很大差异)的情况不适用。
9.奇异值分解:在线性代数中,SVD是真正复杂矩阵的因式分解。对于给定的m * n矩阵M,存在分解,使得M =UΣV,其中U和V是酉矩阵,Σ是对角矩阵。
PCA实际上是SVD的简单应用。在计算机视觉技术中,第一个人脸识别算法使用PCA和SVD,以将面部表示为“特征脸”的线性组合,进行降维,然后通过简单的方法将面部匹配到身份;虽然这种方法更复杂,但仍然依赖于类似的技术。
10.独立成分分析: ICA是一种统计技术,用于揭示随机变量、测量或信号集合的隐藏因素。ICA定义了观察到的多变量数据的生成模型,通常将其作为大型样本数据库。
在模型中,假设数据变量是一些未知潜在变量的线性混合,混合系统也是未知的。潜变量被假定为非高斯和相互独立的,它们被称为观测数据的独立成分。
ICA与PCA相关,但它是一种更强大的技术,能够在这些经典方法完全失败时找到潜在的源因素。其应用包括数字图像、文档数据库、经济指标和心理测量。
9. 如何让机器学习得更快
如何更好地掌握机器学习Colorado是伯克利大学的在读博士,同时也是Metacademy的创始人。Metacademy是一个优秀的开源平台,许多专业人员共同在这个平台上编写wiki文章。目前,这些文章主要围绕着机器学习和人工智能这两个主题。在Colorado的建议中,更好地学习机器学习的方法就是不断的通过书本学习。他认为读书的目的就是让心中有书。一个博士在读生给出这样的建议并不令人惊讶,以前本站可能还推荐过类似的建议。这个建议还可以,但我不认为适用每个人。如果你是个开发者,想实现机器学习的算法。下面列出的书籍是一个很好的参考,可以从中逐步学习。机器学习路线图他的关于机器学习的路线图分为5个级别,每个级别都对应一本书必须要掌握的书。这5个级别如下:Level0(新手):阅读《DataSmart:》。需要了解电子表格、和一些算法的高级数据流。Level1(学徒):阅读《MachineLearningwithR》。学习在不同的情况下用R语言应用不同的机器学习算法。需要一点点基本的编程、线性代数、微积分和概率论知识。Level2(熟练工):阅读《》。从数学角度理解机器学习算法的工作原理。理解并调试机器学习方法的输出结果,同时对机器学习的概念有更深的了解。需要有算法、较好的线性代数、一些向量积分、一些算法实现经验。Level3(大师):阅读《ProbabilisticGraphicalModels:PrinciplesandTechniques》。深入了解一些高级主题,如凸优化、组合优化、概率论、微分几何,及其他数学知识。深入了解概率图模型,了解何时应该使用以及如何解释其输出结果。Leval4(宗师):随便去学吧,记得反馈社区。Colorado针对每个级别中列出的书中章节阅读建议,并给出了建议去了解的相关顶级项目。Colorado后来重新发布了一篇博客,其中对这个路线图做了一点修改。他移除了最后一个级别,并如下定义了新的级别:好奇者、新手、学徒、熟练工、大师。他说道,Level0中的机器学习好奇者不应该阅读相关书籍,而是浏览观看与机器学习有关的顶级视频。机器学习中被忽视的主题ScottLocklin也阅读了Colorado的那篇博客,并从中受到了启发,写了一篇相应的文章,名为“机器学习中被忽视的想法”(文中有BorisArtzybasheff绘制的精美图片)。Scott认为Colorado给出的建议并没有充分的介绍机器学习领域。他认为很少有书籍能做到这一点,不过他还是喜欢PeterFlach所着的《MachineLearning:》这本书,因为书中也接触了一些隐晦的技术。Scott列出了书本中过分忽视的内容。如下所示:实时学习:对流数据和大数据很重要,参见VowpalWabbit。强化学习:在机器人方面有过讨论,但很少在机器学习方面讨论。“压缩”序列预测技术:压缩数据发现学习模式。参见CompLearn。面向时间序列的技术。一致性预测:为实时学习精确估计模型。噪声背景下的机器学习:如NLP和CV。特征工程:机器学习成功的关键。无监督和半监督学习。这个列表很好的指出了机器学习中没有注意到的领域。最后要说明的是,我自己也有一份关于机器学习的路线图。与Colorado一样,我的路线图仅限于分类/回归类型的监督机器学习,但还在完善中,需要进一步的调查和添加所有感兴趣的主题。与前面的“读这些书就可以了”不同,这个路线图将会给出详细的步骤。
10. 机器学习中常用的方法有什么
机器学习中常用的方法有LR,SVM,集成学习,贝叶斯