① 任意两个两位数相乘的简便算法
一、两位数乘两位数.1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾.例:12×14=?解:1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位.2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾.例:23×27=?2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位.3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾.例:37×44=?3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位.4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾.例:21×41=?2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉.例:11×23125=?2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一.6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落.例:13×326=?13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一.数学中关于两位数乘法的“首同末和十”和“末同首和十”速算法.所谓“首同末和十”,就是指两个数字相乘,十位数相同,个位数相加之和为10,举个例子,67×63,十位数都是6,个位7+3之和刚好等于10,我告诉他,象这样的数字相乘,其实是有规律的.就是两数的个位数之积为得数的后两位数,不足10的,十位数上补0;两数相同的十位取其中一个加1后相乘,结果就是得数的千位和百位.具体到上面的例子67×63,7×3=21,这21就是得数的后两位;6×(6+1)=6×7=42,这42就是得数的前两位,综合起来,67×63=4221.类似,15×15=225,89×81=7209,64×66=4224,92×98=9016.我给他讲了这个速算小“秘诀”后,小家伙已经有些兴奋了.在“纠缠”着让我给他出完所有能出的题目并全部计算正确后,他又嚷嚷让我教他“末同首和十”的速算方法.我告诉他,所谓“末同首和十”,就是相乘的两个数字,个位数完全相同,十位数相加之和刚好为10,举例来说,45×65,两数个位都是5,十位数4+6的结果刚好等于10.它的计算法则是,两数相同的各位数之积为得数的后两位数,不足10的,在十位上补0;两数十位数相乘后加上相同的个位数,结果就是得数的百位和千位数.具体到上面的例子,45×65,5×5=25,这25就是得数的后两位数,4×6+5=29,这29就是得数的前面部分,因此,45×65=2925.类似,11×91=1001,83×23=1909,74×34=2516,97×17=1649.为了易于大家理解两位数乘法的普遍规律,这里将通过具体的例子说明.通过对比大量的两位数相乘结果,我把两位数相乘的结果分成三个部分,个位,十位,十位以上即百位和千位.(两位数相乘最大不会超过10000,所以,最大只能到千位)现举例:42×56=2352其中,得数的个位数确定方法是,取两数个位乘积的尾数为得数的个位数.具体到上面例子,2×6=12,其中,2为得数的尾数,1为个位进位数;得数的十位数确定方法是,取两数的个位与十位分别交叉相乘的和加上个位进位数总和的尾数,为得数的十位数.具体到上面例子,2×5+4×6+1=35,其中,5为得数的十位数,3为十位进位数;得数的其余部分确定方法是,取两数的十位数的乘积与十位进位数的和,就是得数的百位或千位数.具体到上面例子,4×5+3=23.则2和3分别是得数的千位数和百位数.因此,42×56=2352.再举一例,82×97,按照上面的计算方法,首先确定得数的个位数,2×7=14,则得数的个位应为4;再确定得数的十位数,2×9+8×7+1=75,则得数的十位数为5;最后计算出得数的其余部分,8×9+7=79,所以,82×97=7954.同样,用这种算法,很容易得出所有两位数乘法的积.
二位乘法有些是有规律的。
如:
(1).十几乘以十几
公式:(10+m)(10+n)=(10+m+n)10+mn
(m{1,2,3,4,5,6,7,8,9}、n{1,2,3,4,5,6,7,8,9})。
eg:13*15=?
第一步13+5=18
第二步18*10=180
第三步35=15
第四步180+15=195
这样算是不是很快呢?
我们来写连贯一点:13*15=(13+5)10+35=195;
是不是瞬间就感觉可以心算了?
再来举几个栗子:
17*18=(17+8)10+78=306。
14*19=(14+9)10+49=266。
(2).个位是1的两位数相乘
方法:十位与十位相乘+十位与十位相加+个位与个位相乘(一定是1)
公式:(m10+1)(n10+1)=m10n10+m10+n10+11
(m{1,2,3,4,5,6,7,8,9}、n{1,2,3,4,5,6,7,8,9})。
eg:31*41=?
第一步:30*40=1200
第二步:30+40=70
第三步:1*1=1
第四步:1200+70+1=1271
再来点:
51*61=50*60+50+60+11=3111。
71*41=70*40+70+40+11=2911。
(3).十位相同个位不同的两位数相乘(这个和第一个差不多)
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去
eg:38*36=?
第一步:38+6=44
第二步:44*30=1320
第三步:8*6=48
第四步:13*20+48=1368
44*47=(44+7)40+47=2068。
78*73=(78+3)70+83=5694。
(4).首位相同,两尾数和等于10的两位数相乘两位数乘法的巧算技巧
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
eg:52*58=?
第一步:5+1=6
第二步:6*5=30
第三步:2*8=16
第四步将30和16连接起来=3016
77*73=? (7+1)7=56-- 7*3=21 连起来就是5621
94*96=? (9+1)9=90-- 4*6=24 连起来就是9024。
(5).被乘数首尾相同,乘数首尾和是10的两位数相乘
乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。
eg:33*46=?
第一步:4+1=5
第二步:5*3=15
第三步:3*6=18
第四步:将15和18连起来=1518
77*91=? (9+1)7=70-- 7*1=07 连起来等于7007
55*28=? (2+1)5=15-- 5*8=40 连起来等于1540
(6).两首位和是10,两尾数相同的两位数相乘
两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。
eg:78*38=?
第一步:7*3=21
第二步:21+8=29
第三步:8*8=64
第四步:将29和64连起来=2964
45*65=? (46)+5=29-- 5*5=25 连起来等于2925
74*34=? (73)+4=25-- 4*4=16 连起来等于2516
以上方法心得出自某乎友人,签名:成大事者,争百年,不争一息。
③ 有什么两位乘法速算的好方法吗
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
④ 两位数的乘法怎么算最简便
一、两位数乘两位数。1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解:1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。数学中关于两位数乘法的“首同末和十”和“末同首和十”速算法。所谓“首同末和十”,就是指两个数字相乘,十位数相同,个位数相加之和为10,举个例子,67×63,十位数都是6,个位7+3之和刚好等于10,我告诉他,象这样的数字相乘,其实是有规律的。就是两数的个位数之积为得数的后两位数,不足10的,十位数上补0;两数相同的十位取其中一个加1后相乘,结果就是得数的千位和百位。具体到上面的例子67×63,7×3=21,这21就是得数的后两位;6×(6+1)=6×7=42,这42就是得数的前两位,综合起来,67×63=4221。类似,15×15=225,89×81=7209,64×66=4224,92×98=9016。我给他讲了这个速算小“秘诀”后,小家伙已经有些兴奋了。在“纠缠”着让我给他出完所有能出的题目并全部计算正确后,他又嚷嚷让我教他“末同首和十”的速算方法。我告诉他,所谓“末同首和十”,就是相乘的两个数字,个位数完全相同,十位数相加之和刚好为10,举例来说,45×65,两数个位都是5,十位数4+6的结果刚好等于10。它的计算法则是,两数相同的各位数之积为得数的后两位数,不足10的,在十位上补0;两数十位数相乘后加上相同的个位数,结果就是得数的百位和千位数。具体到上面的例子,45×65,5×5=25,这25就是得数的后两位数,4×6+5=29,这29就是得数的前面部分,因此,45×65=2925。类似,11×91=1001,83×23=1909,74×34=2516,97×17=1649。为了易于大家理解两位数乘法的普遍规律,这里将通过具体的例子说明。通过对比大量的两位数相乘结果,我把两位数相乘的结果分成三个部分,个位,十位,十位以上即百位和千位。(两位数相乘最大不会超过10000,所以,最大只能到千位)现举例:42×56=2352其中,得数的个位数确定方法是,取两数个位乘积的尾数为得数的个位数。具体到上面例子,2×6=12,其中,2为得数的尾数,1为个位进位数;得数的十位数确定方法是,取两数的个位与十位分别交叉相乘的和加上个位进位数总和的尾数,为得数的十位数。具体到上面例子,2×5+4×6+1=35,其中,5为得数的十位数,3为十位进位数;得数的其余部分确定方法是,取两数的十位数的乘积与十位进位数的和,就是得数的百位或千位数。具体到上面例子,4×5+3=23。则2和3分别是得数的千位数和百位数。因此,42×56=2352。再举一例,82×97,按照上面的计算方法,首先确定得数的个位数,2×7=14,则得数的个位应为4;再确定得数的十位数,2×9+8×7+1=75,则得数的十位数为5;最后计算出得数的其余部分,8×9+7=79,所以,82×97=7954。同样,用这种算法,很容易得出所有两位数乘法的积。
⑤ 两位数相乘的快速秘诀
前提两个两位数,是十位数相同,个位数相加等于10.
如12X18,34X36 65X65
遇到这种情况,可以一口说出答案的.方法是:
十位数X(十位数+1)=AB
两个个位数直接相乘=CD
那么结果就是ABCD
举例说明:
73X77=5621
7X8=56
3X7=21
85X85=7225
8X9=72
5X5=25
12X18=216
1X2=2
2X8=16
⑥ 二位数乘法,你有哪些妙招和技巧
两位数相称乘,有一些技巧可以大大提高运算效率。如果孩子能够将这些熟练掌握,不论是正确率还是质量都可以大大提高。下面是星火总结的一些两位数相乘运算技巧,可以应付绝大多数两位数乘法。尽量以顺口溜的方式呈现,方便记忆。但运算口诀的韵脚实在难找。两个十几来求积,结果再也无需等。头乘头,尾加尾,别忘两尾再相乘。数字依次写上去,满十则需要进位。
⑦ 有任意两位数相乘的万能法速算口诀吗
①它共分为三步:
第一步:被乘数的“数首”和乘数的“数尾'、被乘数的”数尾“和乘数的”数首“相乘以后,两积相加得一数,
第二步:被乘数的“数首“和乘数的”数首“、被乘数的”数尾“和乘数的”数尾“相乘以后,两积相加得一数。
第三步:把以上得到的那两个数相加起来便是全积
②口诀:
首尾尾首交互乘,乘积相加添一零
两首两尾积之和,再次相加积便成
注:两首诗指两个因数的十位数,比如:53*42,它们的两首应是50和40,而不是5和4.
③例题一:计算:53*42
解析;按口诀计算:
1.被乘数的“数首”5和乘数的“数尾”2,被乘数的“数尾”和乘数的“数首”4相乘5*2=10,3*4=12.积相加在扩大10倍得一数,(10*12)*10=220,
2.被乘数的“数首”50和乘数的“数首”40、被乘数的“数尾”3和乘数的“数尾”2,相乘了以后,50*40=2000、3*2=6=06、两积相加得一数,2006
3.把以上得到的两个数再次相加起来,220+2000=2226,便是全积!
50*40+3*2
两首两尾积之和
【解题过程】53*42=(5*2+3*4)*10
首尾尾首交互乘,乘积相加添一零
④例题二:计算:72*63
【解题过程】72*63
=(7*3+2*6)*10+(70*60+2*3)
=4536
⑧ 二位数乘法速算技巧有哪些
方法1:平方差公式。比如37×43=40×40-9=1591
如果能熟悉1-99的平方,两位数乘法会轻松很多。不用去硬背,1-99的平方数是有规律的。
方法2:利用特殊数字
1001=7×11×13
111=3×37
等等,例如37×78=111×26=2886。
这是用的最多的方法,其他的转化方法就因人而异了,总之就是尽可能将乘法简单化。
(8)二位数相乘最佳方法扩展阅读:
3×5表示5个3相加
5x3表示3个5相加。
乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
⑨ 两位数乘法心算有什么快又简单的方法
一、两位数乘两位数。
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
数学中关于两位数乘法的“首同末和十”和“末同首和十”速算法。所谓“首同末和十”,就是指两个数字相乘,十位数相同,个位数相加之和为10,举个例子,67×63,十位数都是6,个位7+3之和刚好等于10,我告诉他,象这样的数字相乘,其实是有规律的。就是两数的个位数之积为得数的后两位数,不足10的,十位数上补0;两数相同的十位取其中一个加1后相乘,结果就是得数的千位和百位。具体到上面的例子67×63,7×3=21,这21就是得数的后两位;6×(6+1)=6×7=42,这42就是得数的前两位,综合起来,67×63=4221。类似,15×15=225,89×81=7209,64×66=4224,92×98=9016。我给他讲了这个速算小“秘诀”后,小家伙已经有些兴奋了。在“纠缠”着让我给他出完所有能出的题目并全部计算正确后,他又嚷嚷让我教他“末同首和十”的速算方法。我告诉他,所谓“末同首和十”,就是相乘的两个数字,个位数完全相同,十位数相加之和刚好为10,举例来说,45×65,两数个位都是5,十位数4+6的结果刚好等于10。它的计算法则是,两数相同的各位数之积为得数的后两位数,不足10的,在十位上补0;两数十位数相乘后加上相同的个位数,结果就是得数的百位和千位数。具体到上面的例子,45×65,5×5=25,这25就是得数的后两位数,4×6+5=29,这29就是得数的前面部分,因此,45×65=2925。类似,11×91=1001,83×23=1909,74×34=2516,97×17=1649。
为了易于大家理解两位数乘法的普遍规律,这里将通过具体的例子说明。通过对比大量的两位数相乘结果,我把两位数相乘的结果分成三个部分,个位,十位,十位以上即百位和千位。(两位数相乘最大不会超过10000,所以,最大只能到千位)现举例:42×56=2352
其中,得数的个位数确定方法是,取两数个位乘积的尾数为得数的个位数。具体到上面例子,2×6=12,其中,2为得数的尾数,1为个位进位数;
得数的十位数确定方法是,取两数的个位与十位分别交叉相乘的和加上个位进位数总和的尾数,为得数的十位数。具体到上面例子,2×5+4×6+1=35,其中,5为得数的十位数,3为十位进位数;
得数的其余部分确定方法是,取两数的十位数的乘积与十位进位数的和,就是得数的百位或千位数。具体到上面例子,4×5+3=23。则2和3分别是得数的千位数和百位数。
因此,42×56=2352。再举一例,82×97,按照上面的计算方法,首先确定得数的个位数,2×7=14,则得数的个位应为4;再确定得数的十位数,2×9+8×7+1=75,则得数的十位数为5;最后计算出得数的其余部分,8×9+7=79,所以,82×97=7954。同样,用这种算法,很容易得出所有两位数乘法的积。
⑩ 二位数乘法如何速算
两位数乘法速算口诀
两位数乘法速算口诀 一般口诀:
首位之积排在前,首尾交叉积之和十倍再加尾数积。如37x64=1828+(3x4+7x6)x10=2368
1、同尾互补,首位乘以大一数,尾数之积后面接。 如:23×27=621
2、尾同首互补,首位之积加上尾,尾数之积后面接。87×27=2349
3、首位差一尾数互补者,大数首尾平方减。如76×64=4864
4、末位皆一者,首位之积接着首位之和,尾数之积后面接。如:51×21=1071
------- “几十一乘几十一”速算 特殊:用于个位是1的平方,如21×21=441
5、首同尾不同,一数加上另数尾,整首倍后加上尾数积。23×25=575
速算1),首位皆一者,一数加上另数尾,十倍加上尾数积。17×19=323---- “十几乘十几”速算 包括了十位是1(即11~19)的平方,如11×11=121---- “十几平方”
速算 2)首位皆二者,一数加上另数尾,廿倍加上尾数积。25×29=725----“二十几乘二十几”
速算 3)首位皆五者,廿五接着尾数积,百位再加尾数之和半。57×57=3249----“五十几乘五十几”
速算 4)首位皆九者,八十加上两尾数,尾补之积后面接。95×99=9405----“九十几乘九十几”
速算 5)首位是四平方者,十五加上尾,尾补平方后面接。46×46=2116---- “四十几平方”
速算 6)首位是五平方者,廿五加上尾,尾数平方后面接。51×51=2601---- “五十几平方”
6、互补乘以叠数者,首位加一乘以叠数头,尾数之积后面接。37×99=3663
7、末位是五平方者,首位加一乘以首,尾数之积后面接。如65×65= 4225---- “几十五平方”
8、某数乘以一一者,首尾拉开,首尾之和中间站。如34×11=3 3+4 4=374
9、某数乘以十五者,原数加上原数的一半后后面加个0(原数是偶数)或小数点往后移一位。如151×15=2265,246×15 =3690
10、一百零几乘一百零几,一数加上另数尾,尾数之积后面接。如108×107=11556
11、俩数差2者,俩数平均数平方再减去一。如49x51=50x50-1=2499
12、几位数乘以几位九者,这个数减去(位数前几位的数+1)的差作积的前几位,末位与个位补足几个0。
1)一个数乘9:这个数减去(个位前几位的数+1)的差作积的前几位,末位与个位补足10 4×9=36 想:个位前是0, 4-(0+1)=3,末位是10-4=6 合起来是36 783×9=7047 想 个位前是78,783-(78+1)=704,末位是10-3=7 合起来是7047
2)一个数乘99:这个数减去(十位前几位的数+1),末两位凑100: 14×99= 14-(0+1)=13, 100-14=86 1386 158×99= 158-(1+1)=156, 100-58=42 15642 7357×99= 7357-(73+1)=7283 100-57=43 728343
3)一个数乘999:可以依照上面的方法进行推理:这个数减去(百位前几位的数+1),末三位凑1000 11234×999= 11234-(11+1)=11222,末三位是1000-234=766,11222766