① 24×100的简便方法
24*100=2400
祝学习进步
望采纳,谢谢
② 从一加到一百最简单的方法是
(1+100)100/2 这用到一个公式 高中学的,不过初中的奥数也会将这个公式,高中对于这个公式会讲得更具体些
③ 1加到100的简便算法,急!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1+2+3+.....+100
=(1+100)x50
=5050
1,2,3...100这是一个等差数列。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
(3)一百简便方法扩展阅读:
等差数列从通项公式可以到的以下推论:
1、 和=(首项+末项)×项数÷2;
2、项数=(末项-首项)÷公差+1;
3、首项=2x和÷项数-末项或末项-公差×(项数-1);
4、末项=2x和÷项数-首项;
5、末项=首项+(项数-1)×公差;
6、2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
④ 1 加到100用简便方法怎么算
1+2+3+4+5+6+7+8+9+10+11......+99+100
=(1+100)+(2+99)+(3+98)+......+(49+52)+(50+51)
=101*50
=5050
这是一个等差数列,也可以直接用等差数列求和公式计算:
1+2+3+4+5+6+7+8+9+10+11......+99+100=(1+100)*100/2=5050
⑤ 100简便运算题有答案
58×99+58
=58×(99+1)
=58×100
=5800
75+86+25+14
=(75+28)+(86+14)
=100+100
=200
125×32
=125×8×4
=1000×4
=4000
101×56
=(100+1)×56
=100×56+56
=5600+56
=5656
25×4+75×4
=(25+75)×4
=100×4
=400
300÷125÷8
=300÷(125×8)
=300÷1000
=0.3
396-96-172-28
=(396-96)-(172+28)
= 300-200
= 100
125*24
= 125*8*3
= 1000*3
= 3000
26*15
= (20+6)*15
= 20*15 + 6*15
= 300+90
=390
25*99*4
= 25*4*99
= 100*99
= 9900
250*32
= 250*4*8
= 1000*8
= 8000
(98+98+98+98)*25
= 4*98*25
= 4*25*98
= 100*98
= 9800
0.4×125×25×0.8
=(0.4×25)×(125×0.8)
=10×100=1000
1.25×(8+10)
=1.25×8+1.25×10
=10+12.5=22.5
9123-(123+8.8)
=9123-123-8.8
=9000-8.8
=8991.2
1.24×8.3+8.3×1.76
=8.3×(1.24+1.76)
=8.3×3=24.9
9999×1001
=9999×(1000+1)
=9999×1000+9999×1
=10008999
14.8×6.3-6.3×6.5+8.3×3.7
=(14.8-6.5)×6.3+8.3×3.7
=8.3×6.3+8.3×3.7
8.3×(6.3+3.7)
=8.3×10
=83
1.24+0.78+8.76
=(1.24+8.76)+0.78
=10+0.78
=10.78
933-157-43
=933-(157+43)
=933-200
=733
⑥ 从1加到100等于多少又简便方法吗
等差求和:Sn=n (a1+an)/2
=na1+n(n-1)d/2
S100=100(1+100)/2=5050
等差数列
等差公式:an=a1+(n-1)d
等差求和:Sn=n (a1+an)/2
=na1+n(n-1)d/2
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{ a }、{ b }为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.
⑷对任何m、n ,在等差数列{ a }中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等差数列时,有:a + a + a + … = a + a + a + … .
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).
⑺如果{ a }是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列{ a }中,a -a = a -a = md .(其中m、k、 )
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a ,a ,a 为等差数列中的三项,且a 与a ,a 与a 的项距差之比 = ( ≠-1),则a = .
等差数列前n项和公式S 的基本性质
⑴数列{ a }为等差数列的充要条件是:数列{ a }的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).
⑵在等差数列{ a }中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = .
⑶若数列{ a }为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 .
⑷若两个等差数列{ a }、{ b }的前n项和分别是S 、T (n为奇数),则 = .
⑸在等差数列{ a }中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列{a }中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.
⑺记等差数列{a }的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.
⑦ 从1加到100等于多少简便方法
解题思路:从1加到100的和可以看作是一个公差为1的等差数列,直接利用等差数列的公式(首项+末项)×项数÷2可以很快得出答案。
解题过程:
sn = 1+2+3+4+...+100
=[n*(a1+an)]/2
= 100*(1 + 100)/2
= 5050
得出结果,从1加到100的和等于5050。
(7)一百简便方法扩展阅读:
1、从1到n的自然数之和:Sn = n * (n + 1) / 2
把两个相同的自然数列逆序相加
2Sn=1+n + 2+(n-1) + 3+(n-2) + ... n+1
=n+1 +n+1 + ... +n+1
=n*(n+1)
Sn=n*(n+1)/2
2、从m到n的自然数之和:Smn=(n-m+1)/2*(m+n)
(n>m)
Smn=Sn-S(m-1)
=n*(n+1)/2 -(m-1)*(m-1+1)/2
={n*(n+1) - m(m-1)}/2
={n*(n+1) - mn + m(1-m) + mn }/2
={n*(n-m+1)+ m(1+ n-m)}/2
=(n+m)(n-m+1)/2
⑧ 一至一百的和是多少可以用什么简便方法计算
等差数列 首项加末项的和乘以项数除以2就是你要的答案了
(1+100)*100/2=5050
⑨ 100道简便运算
158+262+138
375+219+381+225
5001-247-1021-232
(181+2564)+2719
378+44+114+242+222
276+228+353+219
(375+1034)+(966+125)
(2130+783+270)+1017
99+999+9999+99999
7755-(2187+755)
2214+638+286
3065-738-1065
899+344
2357-183-317-357
2365-1086-214
497-299
2370+1995
3999+498
1883-398
12×25
75×24
138×25×4
(13×125)×(3×8)
(12+24+80)×50
704×25
25×32×125
32×(25+125)
88×125
102×76
58×98
178×101-178
84×36+64×84
75×99+2×75
83×102-83×2
98×199
123×18-123×3+85×123
50×(34×4)×3
25×(24+16)
178×99+178
79×42+79+79×57
7300÷25÷4
8100÷4÷75
16800÷120
30100÷2100
32000÷400
49700÷700
1248÷24
3150÷15
4800÷25
⑩ 99×99/100简便方法
99×99/100
=(99x100-99)/100
=99-99/100
=98又1/100