㈠ 菱形的判定方法
菱形的判定定理
1、四条边相等的四边形是菱形。
证明:
∵AB=CD,BC=AD,
∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).
又∵AB=BC,
∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).
2、对角线互相垂直的平行四边形是菱形。
证明:
∵四边形ABCD是平行四边形,
∴OA=OC(平行四边形的对角线相互平分)。
又∵AC⊥BD,
∴BD所在直线是线段AC的垂直平分线,
∴AB=BC,
∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)。
3、有一组邻边相等的平行四边形是菱形。
RF是三角形ABD的中位线,于是RF∥AD,
同理:GH∥AD,RH∥BE,FG∥BE,所以有RF∥GH,RH∥FG,
所以四边形RFGH是平行四边形;
第二步证明△ACD≌△BCE,则AD=BE,于是有RH=RF;所以四边形RFGH是菱形。
(1)菱形的判定方法有哪些扩展阅读
菱形定理的运用:
已知:如图,在◇ABCD中,对角线AC的垂直平分线分别与AD、AC、BC分别交于点E、O、F。则四边形AFCE是菱形。
证明:
∵四边形ABCD是平行四边形,
∴AE∥FC(平行四边形的对边平行),
∴∠EAO=∠FCO.
∵EF平分AC,
∴AO=OC.
又∵∠AOE=∠COF=90°,
∴△AOE≌△COF(ASA),
∴EO=FO,
∴四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形)。
又∵EF⊥AC,
∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形)。