1. 绠渚胯$畻镐庝箞绠
绠渚胯$畻鏂规硶濡备笅锛
1銆佸姞𨰾鍙锋硶锛氭嫭鍙峰墠鏄锷犲彿锛屽幓鎺夋嫭鍙蜂笉鍙桦彿锛屾嫭鍙峰墠鏄鍑忓彿锛屽幓鎺夋嫭鍙疯佸彉鍙枫
2銆佷箻娉曞垎閰嶅緥娉曪细𨰾鍙峰墠鏄涔桦彿锛屽幓鎺夋嫭鍙蜂笉鍙桦彿锛屾嫭鍙峰墠鏄闄ゅ彿锛屽幓鎺夋嫭鍙疯佸彉鍙枫
3銆佷箻娉旷粨钖埚緥娉曪细鍏堢畻𨰾鍙峰栫殑涔樻硶锛屽啀绠楁嫭鍙峰唴镄勫姞鍑忔硶銆
5銆佸炲己鐞呜В鑳藉姏锛氱亩渚胯$畻鏂规硶鍙浠ュ府锷╂垜浠镟村ソ鍦扮悊瑙f暟瀛︽傚康鍜屽师鐞嗭纴浠庤屾洿濂藉湴鎺屾彙鏁板︾煡璇嗐
6銆佹彁楂樻暟瀛﹀簲鐢ㄨ兘锷涳细阃氲繃绠渚胯$畻锛屾垜浠鍙浠ユ洿濂藉湴搴旂敤鏁板︾煡璇呜В鍐冲疄闄呴梾棰桡纴浠庤屽炲己鏁板﹀簲鐢ㄨ兘锷涖
7銆佸炲己阃昏緫镐濈淮鑳藉姏锛氱亩渚胯$畻寰寰闇瑕侀昏緫鎺ㄧ悊鍜屾濈淮𨱔垫椿镐х殑杩愮敤锛屼粠钥屽炲己阃昏緫镐濈淮鑳藉姏銆
8銆佹縺鍙戝︿範鍏磋叮锛氱亩渚胯$畻鏂规硶鍙浠ヨ╂垜浠镒熷弹鍒版暟瀛︾殑榄呭姏鍜岃叮锻虫э纴浠庤屾縺鍙戝︿範鍏磋叮鍜屽姩锷涖
2. 简便计算的方法有哪几种
一,简便计算是采用特殊的计算方法,运用运算定律与数字的基本性质,从而使计算简便,将一个很复杂的式子变得很容易计算出结果。
3.结合律法:去括号法:
(1)在加减运算中去括号时,括号前是加号,去掉括核物号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。例如:17+(13-7)=17+13-7。
(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号。例如:1×(6÷2)=1×6÷2。
4.乘法分配律法:
(1)括改扒液号里是加或减运算,与另一个数相乘,注意分配。例如:8×(5+11)=8×5+8×11。
(2)提取公因式法。例如:9×8+9×2=9×(8+2)。
四,简便计算的主要步骤:
①遇见复杂的计算式时,先观察有没有可能凑整。
②运用四则运算凑成整十整百之后再进行简便计算。
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
示例:
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
示例:
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
示例:
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
示例:
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
数学乘法运算定律
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成“·”。
2、乘法结合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc
4. 数学简便计算,有哪几种方法
一、整体简便计算。整个一道算式可以用简便方法计算,这种形式最为常见。例如:
=1.14×10
=11.4
二、局部简便计算。一道算式中局部可以进行简便计算,这种形式也不少见。
三、中途简便计算。开始计算并不能简便计算,而经过一两步后却能进行简便计算,这种情况最容易忽视。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重复简便计算。在一道题里不止一次地进行简便计算,这种情况往往不注意后一次简便计算。例如:
=8×55×0.125
=8×0.125×55
第二次
=1×55
=55
一简算的根据
a、乘法运算定律
b、加法运算定律
c、减法、除法的运算性质
二简算的类型
a、直接简算
b、部分简算
c、转化简算
d、过程简算
三简算的几种公式:
加法:a+b+c=a+(b+c)(加法结合律)
乘法:a×b×c=a×c×b(乘法交换律)
a×b×c=a×(b×c)(乘法结合律)
(a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
减法:a-b-c=a-c-b(减法交换律)
a-b-c=a-(b+c)(减法结合律)
除法:a÷b÷c=a÷c÷b(除法交换律)
a÷b÷c=a÷(b×c)(除法结合律)
(a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除数是两个数的差或和的情况下才能进行分配
希望帮到你
望采纳
谢谢
加油
5. 数学凑十法简便运算方法
数学凑十法简便运算方法主要包括以下几点:
掌握好朋友数:
运用凑十法转化题目:
分解计算:
总结:凑十法是一种简便的运算方法,通过掌握好朋友数,将复杂的进位加法转化为简单的10加几的题目,再通过分解计算得出最终结果。这种方法能够帮助学生更快速地完成数学计算。
6. 数学简便计算,有哪几种方法
简便计算主要有三大方法,分别是加减凑整、分组凑整、提公因数法。
它采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算。
就像68+77=?
大多数人不一定立刻能算出结果,
如果换成70+75=?
相信每一个人都可以一口算出和是145。
这里其实就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇见复杂的计算式时,
先观察有没有可能凑整,
凑成整十整百之后再进行计算,
不仅简便,而且避免计算出错。
①加减凑整
【例题1】999+99+29+9+4=?
题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例题2】5999+499+299+19=?
看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。
没有枪没有炮,自己去创造!
先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分组凑整
在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。
【例题3】100-95+92-89+86-83+80-77=?
题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。
根据加法减法运算性质,我们给相邻的项加上括号。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。
③提取公因数法
这就需要用到乘法分配律提取公因数,
又称为提取公因数法。
如果没有公因数,我们可以采取乘法结合律变化出公因数。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例题4】47.9x6.6+529x0.34=?
很明显题目中的6.6+3.4=10,我们想办法凑出一个3.4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,创造出一个47.9,方便我们提取公因数。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。