㈠ 乘法和除法的简便运算
特殊数字的简便运算
1、特殊数字的简便运算是指含有5,2或它们倍数的乘法运算,例如2x4x5x25这样的乘法运算,可以写成2x5x4x25=10x100=1000.
2、有些数字虽然不是2和5之类的数,但是可以写成因数相乘的形式,便于乘法运算。例如624x125=2x2x2x2x39x5x5x5=2x5x2x5x2x5x2x39=78000
3、需要记住2x5=10,4x25=100,8x125=1000这些常见的快速运算的式子。
首数相同尾数互补的乘法
1、尾数互补是指两个数的十位相同,尾数相加等于10,例如72x78就属于这一类。这种运算是初中所用到的十字相乘法有关,在小学范围只要知道方法,直接使用就可以。
2、它的运算方法是十位相乘,作为乘积的前两位。尾数相乘作为乘积的后两位,一定要注意特例,如果两个数中一个尾数是1,另一个尾数是9,这个时候十位要补个0例如61x69,答案不是369,乃是3609。
3、如果是三位数的话,前两位相乘,后面个位相乘直接放在后面,例如242x248,前面应该是24x25=600,后面应该是2x8=16,运算结果应该是60016。
小数除法的简便运算
小数除法的简便计算与整数除法的简便计算一样,用到的是除法性质。
除法性质1、A ÷ B ÷ C = A ÷ ( B × C )
如:42÷2.8 =42÷( 0.7 × 4 )= 42 ÷ 0.7 ÷ 4 = 60 ÷ 4 = 15
如:420÷2.5÷4 = 420÷(2.5×4 )= 420 ÷ 10 = 42
除法性质2、 (a-b)÷c=a÷c-b÷c
除法性质3、 A ÷ ( B ÷ C ) = A ÷ B × C
除法性质4、 A × ( B ÷ C ) = A × B ÷ C
㈡ 璁$畻涔樻硶镄勭亩渚挎柟娉
璁$畻涔樻硶镄勭亩渚挎柟娉曞备笅锛缁揿悎娉曪纴鎶樻暟娉曪纴鍒呜В娉曪纴鏀规暟娉曘
锛堜竴锛夌粨钖堟硶
涓涓鏁拌繛缁涔树袱涓涓浣嶆暟锛屽彲镙规嵁𨱍呭喌鏀瑰啓鎴愮敤杩欎釜鏁颁箻杩欎袱涓鏁扮殑绉镄勫舰寮忥纴浣胯$畻绠渚裤
渚1璁$畻锛19脳4脳5
19脳4脳5锛19脳锛4脳5锛夛绅19脳20锛380
鍦ㄨ$畻镞讹纴娣诲姞涓涓灏忔嫭鍙峰彲浠ヤ娇璁$畻绠渚裤傚洜涓烘嫭鍙峰墠鏄涔桦彿锛屾墍浠ユ嫭鍙峰唴涓嶅彉鍙枫
锛堜笁锛夋媶鏁版硶
链変簺棰樼洰锛屽傛灉涓姝ヤ竴姝ュ湴杩涜岃$畻锛屾瘆杈冮夯鐑︼纴鎴戜滑鍙浠ユ牴鎹锲犳暟鍙婂叾浠栨暟镄勭壒寰侊纴𨱔垫椿杩愮敤𨰾嗘暟娉曡繘琛岀亩渚胯$畻銆
渚3璁$畻锛99脳99锛199
锛1锛夊湪璁$畻镞讹纴鍙浠ユ妸199鍐欐垚99锛100镄勫舰寮忥纴鐢辨ゅ缑鍒扮涓绉岖亩渚跨畻娉曪细
99脳99锛199锛99脳99锛99锛100锛99脳锛99锛1锛夛纭100锛99脳100锛100锛10000
锛2锛夋妸99鍐欐垚100锛1镄勫舰寮忥纴199鍐欐垚100锛嬶纸100锛1锛夌殑褰㈠纺锛屽彲浠ュ缑鍒扮浜岀岖亩渚跨畻娉曪细锛100锛1锛壝99锛嬶纸100锛1锛夛纭100锛濓纸100锛1锛壝楋纸99锛1锛夛纭100锛濓纸100锛1锛壝100锛100
锛埚洓锛夋敼鏁版硶
链変簺棰樼洰锛屽彲浠ユ牴鎹𨱍呭喌鎶婂叾涓镄勬煇涓鏁拌繘琛岃浆鍖栵纴鍒涢犳浔浠跺寲绻佷负绠銆
渚4璁$畻锛
25脳5脳48锛25脳5脳4脳12锛濓纸25脳4锛壝楋纸5脳12锛夛绅100脳60锛6000
鎶48杞鍖栨垚4脳12镄勫舰寮忥纴浣胯$畻绠渚裤
渚5璁$畻锛16脳25脳25
锲犱负4脳25锛100锛岃16锛4脳4锛岀敱姝ゅ彲灏嗕袱涓4鍒嗗埆涓庝袱涓25鐩镐箻锛屽嵆铡熷纺鍙杞鍖栦负锛氾纸4脳25锛壝楋纸4脳25锛夈
16脳25脳25锛濓纸4脳25锛壝楋纸4脳25锛夛绅100脳100
㈢ 任意两个两位数相乘的简便算法
一、两位数乘两位数.1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾.例:12×14=?解:1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位.2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾.例:23×27=?2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位.3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾.例:37×44=?3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位.4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾.例:21×41=?2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉.例:11×23125=?2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一.6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落.例:13×326=?13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一.数学中关于两位数乘法的“首同末和十”和“末同首和十”速算法.所谓“首同末和十”,就是指两个数字相乘,十位数相同,个位数相加之和为10,举个例子,67×63,十位数都是6,个位7+3之和刚好等于10,我告诉他,象这样的数字相乘,其实是有规律的.就是两数的个位数之积为得数的后两位数,不足10的,十位数上补0;两数相同的十位取其中一个加1后相乘,结果就是得数的千位和百位.具体到上面的例子67×63,7×3=21,这21就是得数的后两位;6×(6+1)=6×7=42,这42就是得数的前两位,综合起来,67×63=4221.类似,15×15=225,89×81=7209,64×66=4224,92×98=9016.我给他讲了这个速算小“秘诀”后,小家伙已经有些兴奋了.在“纠缠”着让我给他出完所有能出的题目并全部计算正确后,他又嚷嚷让我教他“末同首和十”的速算方法.我告诉他,所谓“末同首和十”,就是相乘的两个数字,个位数完全相同,十位数相加之和刚好为10,举例来说,45×65,两数个位都是5,十位数4+6的结果刚好等于10.它的计算法则是,两数相同的各位数之积为得数的后两位数,不足10的,在十位上补0;两数十位数相乘后加上相同的个位数,结果就是得数的百位和千位数.具体到上面的例子,45×65,5×5=25,这25就是得数的后两位数,4×6+5=29,这29就是得数的前面部分,因此,45×65=2925.类似,11×91=1001,83×23=1909,74×34=2516,97×17=1649.为了易于大家理解两位数乘法的普遍规律,这里将通过具体的例子说明.通过对比大量的两位数相乘结果,我把两位数相乘的结果分成三个部分,个位,十位,十位以上即百位和千位.(两位数相乘最大不会超过10000,所以,最大只能到千位)现举例:42×56=2352其中,得数的个位数确定方法是,取两数个位乘积的尾数为得数的个位数.具体到上面例子,2×6=12,其中,2为得数的尾数,1为个位进位数;得数的十位数确定方法是,取两数的个位与十位分别交叉相乘的和加上个位进位数总和的尾数,为得数的十位数.具体到上面例子,2×5+4×6+1=35,其中,5为得数的十位数,3为十位进位数;得数的其余部分确定方法是,取两数的十位数的乘积与十位进位数的和,就是得数的百位或千位数.具体到上面例子,4×5+3=23.则2和3分别是得数的千位数和百位数.因此,42×56=2352.再举一例,82×97,按照上面的计算方法,首先确定得数的个位数,2×7=14,则得数的个位应为4;再确定得数的十位数,2×9+8×7+1=75,则得数的十位数为5;最后计算出得数的其余部分,8×9+7=79,所以,82×97=7954.同样,用这种算法,很容易得出所有两位数乘法的积.
㈣ 简便运算的16种运算方法是什么
一、运用乘法分配律简便计算
乘法分配律指的是:
例:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(4)任何所乘任何数的简便方法扩展阅读:
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。
乘法结合律
乘法结合律也是做简便运算的一种方法,它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
㈤ 怎么算两位数乘两位数,所有的简便方法
三年级数学这学期要学到两位数乘两位数,对于中年级的小同学来说,这种运算数字较大,相应的也有了难度,很容易在运算当中出错,那么,如何避免出错,更快速地得出结果呢?
这里介绍三种竖式速算法,第一种,是传统的运算方法:
同样是列竖式,先用两个乘数的个位相乘,得数末位与乘数个位对齐。
接下来,两个乘数的个位与十位交叉相乘,需要两次,得数末位都与乘数十位对齐。
第四步,两个乘数的十位相乘,得数末位与乘数百位对齐。
最后,统一相加,得出积。
这种速算方法的特点,是运算当中不需要进位,一目了然,更快得到运算的结果。