导航:首页 > 知识科普 > 单视图聚类方法有哪些

单视图聚类方法有哪些

发布时间:2024-10-29 22:01:52

① 安徽大学计算机科学与技术学院的研究生专业

一.概况
计算机应用技术专业现设有计算机应用技术的二级学科博士点和硕士点,其培养方式为硕士、博士、提前攻博等等。2002年获准国家立项的计算机应用技术重点学科,2003年获准建立计算机应用技术博士后流动站。硕士研究生学制3年,实行学分制,2005年招生规模为30人。博士研究生学制2年,实行学分制,2005年招生规模为12人。
近年来,本学科先后获得211工程和国家重点学科经费资助,软硬件设施得到了根本改善,在主要研究方向已形成人才高地。
二.学科研究方向介绍
主要研究方向是计算智能与知识工程,包括问题求解商空间理论及其应用、基于商空间理论的粒度计算理论及其应用、构造性机器学习理论及其应用、优化理论与方法的研究、新的层次机器学习理论和方法的研究以及复杂系统的优化技术和方法等等,获得了一批原创性在国内外有重要影响的科研成果。
三.专业课程设置
1.学位课
英语、科学社会主义理论与实践、自然辩证法概论、组合数学、算法设计分析、高级数据库系统、计算机科学数学理论、人工神经网络的理论及应用、人工智能高级教程、高级数据库技术等等
2.非学位课
并行计算、智能计算、计算机视觉、知识发现、专家系统及其开发环境、优化理论及方法、构造性学习理论与方法和数据仓库及数据采集等等
四、学科导师队伍
张铃:男,1937年5月生,福建福清人,1961年毕业于南京大学数学天文系.同年分配至安徽工作,先后在安徽四所大学任教。1993年调至安徽大学人工智能研究所,任所长、教授、博士生导师至今。1986年4月由讲师破格晋升为正教授,1988年被授予国家有突出贡献的中青年专家称号,1991年获享受国家特殊津贴待遇,先后被清华大学、浙江大学、同济大学和中科院智能所等单位聘为客座教授。获得荣誉称号:改革开放以来,获全国教育系统劳动模范等省级以上荣誉称号八次;先后获国家自然科学奖等省级以上学术奖励十次;1978年获安徽省首届科技大会成果奖;1984年获第六届ICL欧洲人工智能奖;1987年获国家教委科学技术进步一等奖;1991年获国家教委科学技术进步二等奖;1992年专着《问题求解理论及应用》获全国高等学校出版社优秀学术专着特等奖;1992年专着《新一代计算技术前沿的研究》获全国优秀科技图书一等奖;1993年获电子工业部科技进步一等奖;1995年获国家自然科学三等奖;1999年获“全国优秀科技图书奖”暨“科技进步奖(科技着作)”一等奖;1999年获安徽省自然科学二等奖。目前主要研究方向有:商空间粒度计算理论(这是目前国际上三大粒度计算理论之一)、智能计算、机器学习理论和方法等。
程家兴:男,澳大利亚南澳大学博士,教授,现任安徽大学计算智能与信号处理教育部重点实验室主任,博士生导师,安徽省计算机学会常务理事,澳大利亚南澳大学SCG研究所研究员。主持和参加国家自然科学基金项目,国家自然科学基金中澳特别基金项目、教育部“优秀青年教师资助计划”项目、教育部博士点基金项目等。与澳大利亚南澳大学建立国际合作关系。研究方向:智能计算,算法分析与设计,最优化方法。获安徽省高校科技进步3等奖,安徽省第三届自然科学优秀学术论文2等奖.。目前,指导博士生5名,硕士生9名。主讲课程有具体数学,智能计算,优化理论与方法,组合数学以及本科生离散数学教学课程等。
张燕平:女,1962.2出生,安徽巢湖人;1981年毕业于上海电力学院热工自动化专业; 1989年作为合肥工业大学微机应用研究所研究生获工学硕士;2000年9月至2003年7月在职读博士研究生,并获得安徽大学计算机应用专业工学博士学位。2000年6月任安徽大学计算机系副教授;2003年担任计算机应用专业硕士研究生导师; 2004年11月任教授。主持完成安徽省教育厅自然科学研究项目1项,参加国家自然科学基金项目多项。2004年获安徽省科技进步二等奖。已在《计算机学报》、《计算机研究与发展》等国家重点期刊和国家级期刊发表学术论文18篇。
汪继文:男,1958年9月生,安徽宿松人。1982年1月本科毕业于安庆师范学院数学系,获理学学士学位。1989年7月硕士毕业于安徽大学数学系,获理学硕士学位。2001年7月博士毕业于中国科学技术大学数学系,获理学博士学位。2001.12 进入中国科技大学动力工程及工程热物理博士后流动站火灾科学国家重点实验室做博士后。2004.8出站,获博士后证书。1982.1-1986.9在安庆师范学院数学系任教。1989年7月硕士毕业后留校到安徽大学计算机学院(原为计算机系)任教到至今。2001年6月担任硕士生导师,2002年9月受聘为教授。2002.12入选为安徽省高校中青年学科带头人培养对象。三次获教学优秀奖,一次获安徽省高校科技进步三等奖。目前主要研究方向是计算机数值模拟技术,先后参加了5项国家自然科学基金项目的研究工作,主持完成两项省教委项目。目前参加一项国家自然科学基金项目,主持一项省自然科学基金项目。已发表学术论文28篇,SCI收录论文4篇。 1. 智能软件
学科带头人李龙澍教授,博士生导师,主要研究兴趣为软件体系结构、不精确知识表示和智能Agent技术,发表研究论文50多篇,主持开发的主要系统有:农业气象决策支持系统、大型数据库管理系统、电子政务系统、网络信息管理系统。
软件体系结构的研究:探讨知识的继承机制和抽象原理,使智能软件系统的数据库、模型库和方法库融为一体,引进了知识的层次结构,增强系统的可用性和维护效率。完成国家“863”项目“基于气象分析的指导农作物种植管理软构件”,主持研究国家自然科学基金项目“智能软件体系结构和组件技术的研究”,深入研究模糊商结构理论,将粒度计算理论用于建造软件体系结构模型,提出了一种基于商空间的智能软件体系结构构造模型,研究成果在农业气象、河流污染、公路管理、煤矿救护等GIS系统中有广泛应用。
不精确知识表示的研究:深入研究不精确知识表示的特点,提出一种适合领域特征的信息处理系统的框架和数据约简、知识发现方案,促进知识库系统开发技术水平的发展。研制适合模糊粗糙集信息处理的新的智能软件体系结构,不仅具有重大学术价值,而且在农业气象分析应用中取得其它方法和系统无法替代的明显效果,结合农业气象信息,分析模糊粗糙集的特性和优点,研制适合知识处理的构件模型,用于建造减灾防灾、农作物管理等实际决策支持系统,产生巨大的社会经济效益。
智能Agent技术的研究:Agent体系结构是智能Agent研究中一个重要的研究方向,它所要解决的问题是智能Agent是由哪些模块组成,这些模块之间如何交换信息,以及如何将这些模块用软件或硬件的方式组合起来形成一个有机的整体。结合完成国家“863”项目、国家自然科学基金项目等重大科研项目和机器人世界杯足球锦标赛RoboCup(Robot World Cup),面向大中型企业的数据仓库进行数据挖掘和建造基于Agent技术的智能决策支持系统,为安徽现代化建设产生重大社会经济效益。
2. 数据库与Web技术
学科带头人郑诚博士、副教授。2002年12月毕业于中国科学技术大学计算机系,并获博士学位,研究方向:数据库与数据仓库技术、知识发现与数据挖掘技术、人工智能与机器学习、新一代Web技术等。2005年9月起在安徽大学计算机科学与技术博士后流动站进行博士后研究(在职)。安徽大学中青年骨干教师,安徽省高校骨干教师培养对象。近几年内作为主要骨干参加国家自然科学基金、863计划、安徽省自然科学基金项目等项目4项。主持省教育厅自然科学研究项目二项,发表学术论文20余篇。
数据库与Web技术方向:研究数据库与数据仓库及其应用技术、基于数据库和数据仓库的数据挖掘技术,研究多粒度数据挖掘技术,将它们应用于税务、网络安全等领域;研究语义Web技术,在Web中引入有关智能技术,让计算机能理解Web上的信息。
3. 并行计算
学科带头人刘锋,博士,教授。主要研究方向:软件工程、并行计算、网格计算,承担国家自然基金项目、教育部科研项目、安徽省自然基金项目和安徽省教育厅自然基金项目多项。
近期发表的主要论着:
1. 基于改进型遗传算法的门阵列模式布局 (EI)小型微型计算机系统 2002,no.3
2. 求复函数方程根的遗传算法 计算机工程与应用2001年,37卷,第24期
3. PVM环境下求复函数方程根的并行遗传算法 小型微型计算机系统 2003,no.7
4. ORACLE数据库的MIT在营业帐务系统中的应用 电信技术 2001.9
5. 电子出版物与纸质出版物异同论 情报科学 2001.7
6. 基于遗传算法的方程求根算法的设计和实现 (EI)控制理论与应用 2004年第3期
7. Internet QoS控制机制综述 计算机科学 2002.3.
8. 基于分布理论和遗传算法的多项式求根算法 微机发展 2001年第6期
9. 基于Agent网格计算性能的实时调节 计算机工程与应用 2003年第39期
10. 并行遗传算法求复函数方程根的设计和实现 (EI)系统工程理论与实践 2004年第6期
4. 中间件技术
学科带头人邹海,博士,高工。2001年3月至2003年7月在中国矿业大学电气工程(信息与电子技术)博士后科研流动站从事博士后研究。近年来主要专注于模糊与随机环境下的粗糙集理论与知识获取、中间件技术等方面的研究。主持或参与完成了国家自然科学基金项目1项、948项目1项、省部级自然科学基金2项和10多项横向合作项目,目前在研省青年教师基金项目1项、省教育厅自然科学基金1项,获省、部级科学技术进步奖3项,发表论文10余篇。近年来承担了包括东北晚中生代资源预测专家系统、坝工建筑物实时监测数据采集系统、基于网络通讯的远程分布式遥测系统、基于数据挖掘的防汛抗旱调度指挥系统、B/S/S架构的客户关系管理系统在内的多个应用系统的设计和研发工作,并得以成功应用。
模糊与随机环境下的粗糙集理论与知识获取研究:针对信息识别中大量存在的不完备信息和随机环境这一的特点,结合智能信息处理领域近年来迅速发展起来的粗糙集(Rough Set)理论,深入研究在复杂系统中不完备信息及其随机环境下知识的表示、知识的约简、知识的学习、归纳和推理等。
中间件技术的研究:中间件技术作为90年代初发展起来的基础软件,近几年来逐渐成为构建网络分布式应用系统的重要支撑工具。它能够解决网络分布计算环境中多种异构数据资源互联共享问题,实现多种应用软件的协同工作。研究方向涉及分布式高性能高可靠企业级基础软件平台架构与机制、应用集成架构与技术、J2EE应用服务器、、工作流技术、移动中间件技术、反射中间件技术、嵌入式中间件技术、网络即插即用中间技术件、普适计算中间件技术、网格计算中间件技术、CORBA高级技术等。目前,中间件已与操作系统、数据库、前端应用软件一起,跻身于软件业发展的重点之列,并成为分布式应用的关键性软件。它可广泛适用于政府部门、银行、证券、电力、电信、交通与军事等关键性的网络分布应用。 一、研究生始招时间及在校研究生规模
始招时间:2002年
在校研究生规模:约60人
二、导师梯队介绍
1.计算机视觉及应用方向
韦穗:安徽大学副校长、教授、中国图像图形学会副理事长、教育部科学委员会信息学部委员,1983年4月至1985年9月在美国密执安大学及弗吉尼亚多理学院作访问学者。长期从事计算机视觉、图像图形学、模式识别、数学形态学和全息成像等领域的研究。近年来承担了多项国家自然科学基金项目和863项目。其中大容量快速图像分析系统(负责人)获中科院科技进步二等奖;并荣获国家863计划智能机器人主题先进工作者称号及国家科技部授予的国家863计划先进工作者称号。863项目“基于VR技术的装配帮助系统”(负责人)的研究, 2000年经863专家组组织验收,认为该项目的成果对于本领域的研究起到了开拓性的作用。国家自然基金项目“基于SVD分解的射影重构算法研究”在图形学中的多视图几何、3D重构和基于图像的绘制、图像获取几何和降低计算复杂性,实现复杂景物的3D描述与显示方面取得了一定的研究成果。主持了2002年第二届国际图像图形学会年会,编辑了两本会议论文集,其中大部分论文都被EI收录,翻译出版《计算机视觉中的多视图几何》(由英国剑桥大学出版社和原着作者Richard Hartley和Sman的授权)。
梁栋:博士、教授(博导),安徽大学电子科学与技术学院副院长。1985年和1990年在安徽大学获学士和硕士学位,2002年获安徽大学计算机应用技术专业工学博士学位。1991年晋升为安徽大学讲师,1996年晋升为安徽大学副教授,2002年晋升为安徽大学教授。1995年被评为安徽大学中青年骨干教师和安徽省中青年骨干教师培养对象,2002年被评为安徽省高等学校中青年学科带头人培养对象。近年来,在国内外学术期刊和学术会议上发表专题学术论文30多篇,主持和参加安徽省自然科学基金、国家自然科学基金、国家863计划、国家科技部科技型中小企业技术创新基金等科研项目20多项,先后获安徽省科技进步四等奖1项、安徽省高等学校科技进步三等奖2项、新型实用专利1项、安徽大学教学成果二等奖1项。主要研究领域:计算机视觉、图象信息处理。
2.图像处理与识别方向
罗斌:博士、教授(博导),英国约克大学计算机科学博士,安徽大学计算机科学与技术学院教授,博士生导师,安徽省首批“皖江学者”特聘教授,安徽省跨世纪学术技术带头人后备人选,安徽大学计算机科学与技术学院院长。中国图象图形学会理事、学术委员会、青年工作委员会委员,IEEE学会会员,IEEE计算机学会会员,英国BMVA会员。研究领域为数字图像处理与模式识别。目前主持国家自然科学基金项目《基于邻接图谱理论的图像聚类方法研究》,以及教育部“优秀青年教师资助计划”项目、安徽省人才开发基金和安徽省教育厅自然科学研究项目等。与国外同行专家保持有良好的合作关系,参加英国EPSRC项目的研究。主要研究成果有:应用现代图的分解理论对图像的结构化描述、图匹配理论和图的聚类方法进行了研究;利用EM算法和矩阵的SVD分解理论得到不同大小及包含结构噪声图的匹配方法,提出一种基于图匹配的图像配准算法;将图的谱分解理论应用于图像的识别和聚类,提出图谱结构特征提取方法,以及利用谱特征进行图的识别与聚类,并应用于图像库的检索。研究成果曾获亚洲计算机视觉学术会议最佳论文奖和安徽省科技进步三等奖。在国内外学术刊物和国际会议上发表论文70余篇,论文被SCI、EI、ISTP等索引40多次,论文代表作曾发表于《IEEE Transactions on Pattern Analysis and Machine Intelligence》、《Computer Vision and Image Understanding》、《Pattern Recognition》、《Pattern Recognition Letters》、《Image Vision Computing》等学术期刊。
3.智能信息处理方向
吴小培:博士、教授(博导)。2002年12月于中国科学技术大学获博士学位,研究方向为生物医学信号处理。2003年10月起在中国科学技术大学信号与信息处理博士后流动站进行博士后研究(在职), 2004年4月-9月美国加州大学圣地亚哥分校访问学者。安徽大学中青年骨干教师,安徽省高校学科带头人培养对象。研究领域:盲信号处理,生物医学信号处理和语音、图像处理和识别。近年内主持和参加国家自然科学基金、安徽省自然科学基金项目等项目5项。发表学术论文40余篇。在盲源分离、独立分量分析和脑电信号处理等方面的研究成果在国内有一定的影响,相关论文多次被同行引用。
柴晓冬:教授,博士。安徽省高校中青年骨干教师。目前在中国科技大学电子技术与科学系做博士后研究(在职),研究内容为基于生物特征识别的信息安全。参与研究国家自然科学基金项目两项,主持省教委自然科学基金项目二项,在国内外重要学术刊物及学术会议上发表论文三十余篇。
4.多维信号处理方向
陶亮:博士、教授(博导),安徽省高校学科拔尖人才,计算机科学与技术学院院长助理。2003年于中国科技大学获得信息与通信工程专业博士学位。1997年考取国家留学基金委公派访问学者资格,次年被派往加拿大温莎大学访问研修一年。1999年被选为安徽大学中青年骨干教师,2001年入选教育部优秀青年教师资助计划并获项目资助,2002年入选安徽省高校首批学科拔尖人才。自1988年研究生毕业留校以来,一直从事教学与科研工作,曾给本科生、研究生开设或主讲过多门专业课程,获得过校教学成果奖和校教书育人先进个人称号;是本校信号与信息处理专业硕士生导师(该学位授予点开点导师之一),同时也是本校计算机应用技术专业博士生导师。参加或主持过多项科学研究,近期主持了安徽省教育厅自然科学重点研究项目、安徽省自然科学基金项目及教育部优秀青年教师资助计划项目的研究各一项。主要研究方向为多维信号处理、生物特征识别技术。在《Journal of Computer Science and Technology》、《Chinese Journal of Electronics》、《电子学报》、《Chinese Optics Letters》等核心学术期刊以及国际学术会议上发表论文50多篇,获得过安徽省第四届自然科学优秀学术论文奖,目前(2005年4月)已有2篇论文被SCI收录,22篇论文被EI收录,10篇论文被ISTP收录,多篇论文被他人引用;有专着1部(《实值Gabor变换理论及应用》);是《电路与系统学报》和《计算机辅助设计和图形学学报》审稿人以及IEEE国际电路与系统专业学术年会审稿人(被邀请担任过审稿委员会委员、专题分会主持)。
三、主要学术成果
1.在国家自然科学基金项目“基本矩阵的鲁棒性计算及应用”支持下,应用视觉理论、投影几何、代数几何、矩阵分析和现代数学最优化理论,完成了基本矩阵的鲁棒性算法研究,并给出了在3维计算机视觉中相关问题的鲁棒性算法。
2.在国家自然科学基金项目“基于SVD分解的射影重构算法研究”支持下,对基于SVD分解的射影重构算法作深入系统的研究,并通过模拟数据和真实图像两方面的实验,获得图像中匹配点噪声效应的定量理解和算法性能的定性理解。
3.在国家自然科学基金项目“基于照片的场景重现”支持下,对基于序列图像的全景漫游技术进行了研究,主要包括:图像插补问题、图像整合问题及全景图生成问题。
4.在国家“863”计划项目“基于虚拟现实技术的装配帮助系统”支持下,完成了以下研究工作:1)建立一个Windows环境下的多模综合实验平台;2)实现一个基于视点的物体识别、定位的帮助装配系统的虚拟现实系统;3)对摄像机自标定、基于视点的插补、3D重构等问题进行了深入地研究。经国家“863”专家组鉴定:对本领域的研究起到了开拓性的作用。
5.在国家自然科学基金项目支持下对计算机产生体视全息图进行了研究。全息技术能提供所有视点、距离上的3D(深度)感知,它是目前最理想的3D显示。当今来自计算机、卫星、先进医学成像设备、战场环境的精确模拟以及地质勘探等各个领域的数据与日俱增,人们越来越希望能将这些数据变换成人们更易理解的形式,即真3D显示的形式。它无须借助眼镜、头盔等辅助设备,并用计算机生成3D显示的编码,由光电器件生成空间显示。
6.先后完成“基于图像的交通肇事现场测距系统”、“基于图像序列的交互式全景漫游生成系统”、“合肥风光交互式全景漫游系统”、“基于图像的犯罪现场重现系统”、“芜湖长江大桥和合肥中心油库交互演示系统”、“宜昌交互式招商引资展示系统”等开发和研制,并应用于交通事故处理、公安刑侦、城市规划、旅游宣传等多个方面,取得了较好的社会效益和经济效益。对计算机视觉、图像处理以及虚拟现实技术的推广应用起到了积极的促进作用。其中“基于图像的交通肇事现场测距系统”和“合肥风光交互式全景漫游系统”经合肥市科技局组织专家鉴定:核心技术水平达到国际先进水平,系统达到国内领先水平,并填补国内空白。
7. 在国家自然科学基金、安徽省自然科学基金项目等项目的支持下,初步验证了用独立分量描述思维脑电特征的可行性,并提出了基于思维脑电独立分量特征的脑机接口技术研究新设想。该研究思路和阶段性成果获得了国内外专家的肯定;研究了小波变换和独立分量分析进行结合的可行性,实验结果表明,基于小波变换和ICA的时频空三域分析方法能较好地解决多导脑电信号ICA分析中存在的过完备问题和非平稳问题;研究了在线ICA算法及其实现技术,提出了一种简单实用的在线Infomax算法,并用于实测脑电数据的在线消澡问题,取得了较理想的结果,该项成果是对Infomax 盲源分离算法的扩展和补充。
8.在教育部优秀青年教师资助计划项目、安徽省自然科学基金项目以及安徽省教育厅自然科学重点研究项目的支持下,研究提出了实值离散Gabor变换(RDGT)理论与快速算法,提出了基于RDGT的瞬变信号表示算法、基于过抽样RDGT的核磁共振FID信号增强算法,以及基于RDGT的线性时变系统表示与逼近方法;研究了基于人脸识别的身份认证方法与系统。研究成果以40多篇论文中英文形式发表在《Journal of Computer Science and Technology》、《Chinese Journal of Electronics》、《电子学报》等重要的核心学术期刊和若干国际学术会议上,并且已有20多篇论文被SCI、EI、ISTP收录。
四、学科研究方向介绍
1.计算机视觉及应用方向
将多视图几何与矩阵分析、谐波分析和现代数学最优化理论结合起来,研究基于图像的3D成像几何与物理中的算法和应用,包括基本矩阵的鲁棒计算及应用、基于照片的场景重现和SVD重构、基于虚拟现实技术的装配帮助系统、计算机产生体视全息图的研究及其在交通事故处理、公安刑侦、城市规划、旅游宣传、文化遗产保护等方面的应用。
2.图像处理与识别方向
将现代图的分解理论、现代统计学理论和模式识别理论应用于数字图像的分析与识别,对图像的结构化描述、图像特征的提取、图像的配准、结构模式识别中的图匹配理论和图的聚类方法进行研究,并将图匹配理论和图聚类方法应用于图像库的检索和索引。
3.智能信息处理方向
研究小波分析理论及其在脑电信号处理中的应用、基于时-频-空三域分析方法的思维脑电特征提取与识别、思维脑电的独立分量分析及其在脑机接口中的应用、在线盲源分离算法及其DSP实现。
4.多维信号处理方向
研究多维信号分析与处理技术的新理论和新方法,并应用于生物信息、语音、图像信号的处理和识别。如一维和二维实值离散Gabor变换理论、快速算法及应用的研究;复杂背景下灰度图像和彩色图像中人眼自动定位算法;基于人脸识别的身份认证方法与系统实现;支持向量机快速学习算法及应用;语音消澡和识别技术等。

② spss聚类分析步骤是什么

以下是进行SPSS聚类分析的详细步骤:


1. 打开SPSS分析工具:首先,你需要在一台设备上操作,如一台戴尔电脑,操作系统为Windows 10。


2. 准备数据:进入数据视图,将数据导入六个变量,包括姓名(字符串类型)和其他五个数字变量:M、C、E、S和R。确保数据已正确填充在相应的列中。


3. 分类分析:在主菜单中,选择“分类”选项,接着选择“系统聚类”进行下一步操作。


4. 选择变量:在系统聚类分析窗口中,将变量M和C拖动到变量框内,作为聚类分析的基础。


5. 进行统计分析:点击统计按钮,选择集中计划,然后点击“继续”以设置统计参数。


6. 创建图形:在图设置窗口中,勾选谱系图,确认设置后点击“继续”,以可视化聚类结果。


7. 选择聚类方法:切换到方法窗口,选择瓦尔德法作为聚类算法,然后点击“继续”以执行该方法。


8. 最后步骤:在系统聚类分析窗口中,点击“确定”按钮,SPSS将生成聚类分析结果和相应的图形,至此,聚类分析过程完成。

③ citespace的研究方法有哪些

具体如下:

1、若要进行文本的内容分析,需要在运行主窗口中term sources 面板上选择“term”包含的范围,有四个数据来源可供选择,“title”、“abstract”、“descriptors””identifiers,如果选择题目或者摘要,还需要在“term selection”中选择“noun phrases”选项,此选项的功能是将题目和摘要中的名词短语抽取出来,进而可对这些名词短语进行特征词共现分析。

2、实际上在多少情况下并不需要对图谱进行修剪,只有在得到的图谱过于庞大和混乱时才使用。

3、时区内修剪和整个网络修剪,建议使用后者。

4、提供了三种可视化视图:聚类试图、时区视图和时间线视图。聚类视图侧重于不同研究领域的知识结构,时区视图更注重于描绘各研究主题随时间的演变趋势和相互影响,时间线视图更便于看出某个研究主题研究基础的时间跨度。Ps:时间线视图要用在citedrefernce分析。

5、citespace自动聚类的实现是依据谱聚类算法,谱聚类本身就是基于图论的一种算法,因此它对共引网络这种基于链接关系而不是节点属性的聚类具有天然的优势。传统的聚类算法,如K均值算法,EM算法等都是建立在凸球形的样本空间上,算法会陷入局部最优。谱聚类算法正是为了弥补上述算法的这一缺陷而产生的。

理论研究:

着眼于分析科学分析中蕴含的潜在知识、是在科学计量学、数据可视化背景下逐渐发展起来的一款引文可视化分析软件。

由于是通过可视化手段来呈现科学知识结构、规律和分布情况,所以得到的可视化图形也称为“科学知识图谱”它是把成千.上万的文章的关键词、作者、机构等按照重要性以图谱的形式呈现给大家,另外它还可以分析词频(可以做简单的词频分析。

但是做不了词性分析),此外它还能发现任何领域文章的转折点研究热点,以及预测相关领域论文的前沿和趋势。对恪位研究学者做文献梳理有极大的帮助。

④ 图神经网络自监督学习 之 PGCL

图神经网络领域的一项重要研究是【Sun Yat-sen University/Sea AI Lab/Tencent Jarvis Lab】发表的《Prototypical Graph Contrastive Learning》(PGCL),它关注于解决图神经网络对标注数据的依赖以及现有方法中采样负样本可能导致的问题。PGCL通过聚类策略,利用样本的聚类中心来构建更有效的负样本,避免了负样本可能与正样本具有相同语义的缺陷。文章的关键点在于,它采用两种不同的图增广方法生成视图,然后通过GNN提取向量表示,并利用聚类中心的距离对样本进行加权,以优化对比学习的效果。

研究背景中,作者指出,尽管有图对比学习方法致力于迁移性和鲁棒性,但当前方法存在两个挑战。PGCL通过引入聚类分配优化目标,通过对比增广视图间的聚类分布,而非直接比较节点表示,来解决这些问题。同时,通过约束聚类中样本数量均衡,避免了过拟合问题。

实验结果显示,PGCL在多项基准测试中表现优于众多无监督和监督方法,尽管与最先进的方法如GIN相比仍存在微小差距。文章还进行了消融实验,验证了聚类和加权策略的有效性。此外,对聚类数量和batch size的敏感性分析表明,适当的参数选择至关重要。

PGCL的实现涉及对样本权重的计算和Sinkhorn-Knopp算法的应用,以优化损失函数。文章的亮点是结合了深度聚类和对比学习的思路,尽管在数据增广和聚类标签处理上与传统方法有所不同。

阅读全文

与单视图聚类方法有哪些相关的资料

热点内容
研究光路可逆时用到的是什么方法 浏览:850
车厘子治疗鼻炎的方法 浏览:798
怎么自酿青葡萄酒的方法 浏览:742
简便电脑使用方法 浏览:125
定量定向的研究方法 浏览:700
拯救者电脑设置u盘启动方法 浏览:391
研究方法有影视鉴赏法 浏览:72
用快捷键恢复出厂设置在哪里设置方法 浏览:50
形体分析法和其他识图方法 浏览:421
简单的内功修炼方法 浏览:691
生态酒鉴别方法 浏览:422
竞猜答案的方法和技巧 浏览:854
冠心病中医治疗方法养生堂 浏览:14
59乘以49哪种方法更简便 浏览:403
常用的去鱼腥的方法 浏览:72
腰肌腱炎锻炼方法 浏览:406
手机胶刀修复方法 浏览:938
有什么可以使人快速醒酒的方法 浏览:323
甲状腺超声检测方法 浏览:386
敦煌壁画风化解决方法 浏览:634