导航:首页 > 知识科普 > 从1乘到100简便方法怎么算

从1乘到100简便方法怎么算

发布时间:2024-09-29 02:20:21

1. 从1一直乘到100结果是多少简便方法怎么

1一直乘到100就是100! 100的阶乘,计算器最简单,有专门的阶乘键

2. 从1一直加到100有什么简便算法

从1一直加到100有两种简便算法:

1、求平均数的算法。

1到100共100个数字,而且他们是等差数列,所以只需要将1+100除以 2,就可以得到平均数,再乘以位数,则得到结果,(1+100)/ 2 x 100

=50.5 x 100

=5050

2、利用等差数列的求和公式直接求和。

等差数列的公式是:(首项+末项)x 项数/2

1到100共100个数,首项为1,公差为1,末项为100,代入公式就是

(1+100)x 100 / 2

=101x100/2

=10100/2

=5050

(2)从1乘到100简便方法怎么算扩展阅读:

等差数列的算法:等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:首项×项数+【项数(项数-1)×公差】/2或【(首项+末项)×项数】/ 2。

3. 从1乘到100等于多少的简便算法

100的阶乘啊
好像没有简便方法吧 愣算
一般计算器算不到 100! 只能算到69!
100!= 9.3326E+157
excel里 有阶乘这个函数
在格子里写入 =fact(*)
就能得出*的阶乘了
1乘到100,就是100!(100的阶乘)
100!=9.+157
(用计算器[运行->calc,(100),(n!)]计算.)

4. 从1一直乘到100怎么算法,是多少

就是100的阶乘(记作100!)。
要求准确的数字只能一个一个乘,不过对比较大的n,有近似公式,即Stiring公式:
n!≈√(2πn) * n^n * e^(-n)

用windows自带的计算器可算出:
100! = 9.+157

若用上面的近似公式,则有
100! ≈ 9.+157

可以看出是相当精确的。

5. 如何计算从一加到一百的简便方法啊

我学习时无意间思考了道数学题;从1加到100这样的有什么别的简便的方法吗?我想了一下,想出了属于自己的简便公式,先简绝凯单想个类似的式子探讨一下,列如:1+2+3+4+5 +6+7+8+9+10=?;我深入发现如果以五为分界线,两边会各有五个数,在为数字5为分界线的两边对应的数相加等于10,也就是说对应的数相加等于式子末尾最终要加段宏兆的数,4与6相对应,3与7相对应,2与8相对应,1与9相对应,其中:10与0相对应,其实最开始要相加的数是0,但零等于没有,所以零就可以去掉,直接从1往后加;这五组数相加都得10,可以看成五个10相乘,在加上中间数,最终结果得55,如何得到其中的分界线只需要除以二,得到中间数后再与握租式子最后加的数相乘,不过还要再加上中间数,把公式化简一下,就是式子最后加的数加个一再乘以中间数,现在放在从一加到100的式子中试试:100÷2×(100+1)=5050;验算后与式子中的结果一样,但如果碰到了式子末尾数是单数计算起来就麻烦了,不过这种办法也可以,还有一种方法就是用式子末尾数字减1,再除以二,再加1乘以式子末尾数,先用式子末尾数字减1,再除以二,再加1是为了算出有几组对应数,算出来之后就可以直接乘以式子末尾数得出结果,再次总结后就发现式子末尾的数并不代表这个式子中有多少个数,还有一个数是0没显示出来,需要用式子末尾数加一才知道这个式子里真正有几个数,也可以套用别的公式,有必要的话可以上网查一下有没有人证出了这些公式

阅读全文

与从1乘到100简便方法怎么算相关的资料

热点内容
手机显微镜鉴宝方法 浏览:951
奶狗快速长大的方法 浏览:186
直发梳使用方法 浏览:322
怎么理解心理学研究的方法 浏览:839
口算乘法运用到的教学方法 浏览:843
安装双面玻璃的方法 浏览:378
鱼池过滤槽安装方法 浏览:489
蒲公英花功效和作用及食用方法 浏览:863
凉血的功效与作用及食用方法 浏览:430
用数字画简单的方法 浏览:125
厨房门安装方法 浏览:185
直角驼背的正确方法 浏览:151
改善鼻炎的方法有哪些 浏览:55
懒人做生日蛋糕简单方法 浏览:390
调查影响二胎生育意愿的研究方法 浏览:307
怎样喂中华龟是正确的方法 浏览:627
草牛肉质量鉴别方法和技巧 浏览:831
简单木头积木的搭建方法 浏览:580
做奥数的最简单方法 浏览:982
创造性劳动方法有哪些 浏览:974