(1)将分数化成小数,再按小数的乘法法则计算。
如0.21×1/2=0.21×0.5=0.105。
(2)将小数化成分数,再按分数的乘法法则计算。
如0.32×3/5=32/100×3/5=8/25×3/5=24/125。
(3)小数与分子直接相乘,再去小数点化成分数,然后再约分。
如0.24×2/3=0.48/3=48/300=16/100=4/25。
(4)可约分去分母的先约分去分母(分母为1),再小数与整数相乘。
如0.24×2/3=0.08×2/1=0.16。
(1)分数怎么计算最简便方法扩展阅读:
分数加减法
1、同分母分数相加减,分母不变,即分数单位不变,分子相加减,能约分的要约分。
2、异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后能约分的要约分。
乘除法
1、分数乘整数,分母不变,分子乘整数,最后能约分的要约分。
2、分数乘分数,用分子乘分子,用分母乘分母,最后能约分的要约分。
3、分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后能约分的要约分。
4、分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后能约分的要约分。
5、分数除以分数,等于被除数乘除数的倒数,最后能约分的要约分。
② 分数简便计算的窍门和技巧
分数计算是小学计算部分的重要部分,也是小升初竞赛的常考内容。对于分数的运算,除了掌握常规的运算法则外,还应该掌握一些特殊的运算技巧,才能提高运算速度,解答较难的问题。今天小升汇总了分数巧算的五大方法,一起来学习吧!
”
分数运算的技巧主要表现在两方面:一是,所有的整数、小数计算技巧全都可以在分数的巧算上加以应用,例如乘法的运算定律、提取公因式、字母替换等常用方法;二是,分数简算中独有的方法,包括分数裂项、整体约分法等。
凑整法
与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数...从而使运算得到简化。
改顺序
通过改变分数式中的先后顺序,使运算算简便。常见有以下几种方法:
01加括号性质
在一个只有加减法运算的算式中,给算式的一部分添上括号,如果括号前面是加号,那么括号里面的运算符号都不改变;如果括号前面是减号,那么括号里面的运算符号都要改变,即加号变减号,减号变加号。用字母表示:
a+b-c=a+(b-c)
a-b+c=a-(b-c)
a-b-c=a-(b+c)
02去括号性质
在一个有括号的加减法运算的算式中,将算式中的括号去掉,如果括号前面是加号,那么去掉括号后,括号里面的运算符号都不改变;如果括号前面是减号,那么括号里面的运算符号都要改变,即加号变减号,减号变加号。用字母表示:
a+(b-c)=a+b-c
a-(b+c)=a-b-c
a-(b-c)=a-b+c
03分数搬家
在连减或加减混合运算中,如果算式中没有括号,那么计算时,可以带着符号“搬家”,用“字母”表示:
a-b-c=a-c-b
a-b+c=a+c-b
提取公因式
当几个乘积相加减,而这些乘积中又有相同的因数时,我们可以采用提取公因数的方法进行巧算。如果乘积中另外几个因数相加减的结果正好凑成整十、整百、整千、整万的数,或是是一些比较简单的数,那么计算就更为简便。这种方法叫“提取公因数法”。
01简单提取法
02创造条件法
对于复杂的分数算式,要根据算式特点,进行一定的转化,创造条件后再运用提取公因数的方法来简算。
拆数
一组分数混合运算时,为了能够“凑整”或凑成比较简单的数,常常需要先把分数中分子或分母进行拆分,再来进行分组运算。这种巧算方法叫“拆分法”,也叫“分解分组法”。
代数法
在相同数字较多的分数式中,用字母表示式子中的一部分,使运算更加方便。这就是分数式中的代数法。
易错点纠正
“孩子做分数运算题目,有几个容易犯的错误,家长要注意纠正:
🔼 异分母分数相加减:要先通分,化成相同的分母,再加减,计算结果能约分的要约分。
🔼在计算过程中要注意统一分数单位。
🔼 在比较分数与小数大小时,要先统一他们的表现形式。将分数转化为小数或者将小数转化为分数。只有表现形式统一了,才有可能比较大小。分数化成小数的方法:用分子除以分母所得的商即可,除不尽时通常保留三位小数。
③ 分数简便运算是什么
分数简便运算是用简便方法计算分数的加减乘除。
例如:
11分之5乘20分之1+11分之3乘2分之1+11分之5乘5分之1
=1/11x1/4+1/11x3/2+1/11x1
=1/11x(1/4+3/2+1)
=1/11x(1/4+6/4+1)
=1/11x11/4
=1/4
分数的乘除法:
1、分数乘整数,分母不变,分子乘整数,最后能约分的要约分。
2、分数乘分数,用分子乘分子,用分母乘分母,最后能约分的要约分。
3、分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后能约分的要约分。
4、分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后能约分的要约分。
5、分数除以分数,等于被除数乘除数的倒数,最后能约分的要约分。
④ 分数简便运算有哪些
分数简便运算包括但不限于以下几种:
1、连乘——乘法交换律的应用:
涉及定律:乘法交换律——a×b×c=a×c×b。
基本方法:将分数相乘的因数互相交换,先行运算。
2、乘法分配律的应用:
涉及定律:乘法分配律——(a±b)×c=ac±bc。
基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
3、乘法分配律的逆运算(提取公因数):
涉及定律:乘法分配律逆向定律——a×b±a×c=a(b±c)。
基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。
4、添加因数“1”
涉及定律:乘法分配律逆向运算、
基本方法:添加因数“1”,将其中一个数n转化为1×n的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。
5、数字化加式或减式:
涉及定律:乘法分配律逆向运算。
基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。