㈠ 怎样解方程
如何学会解方程的方法
在小学阶段,解方程是依据四则运算中已知数与得数之间的关系进行的。我们可以采用以下三种方法来解方程。
一、直接根据四则运算中已知数与得数之间的关系,求未知数的值。
例如:3.6÷x=0.9。这是除法式子,x是除数,表示x除3.6的商是0.9。根据除法中除数等于被除数除以商的关系,求x的值。
解方程: 3.6÷x=0.9
解: x=3.6÷0.9
x=4
二、把含有未知数x的项看成是一个数,逐步求出未知数的值。
例如:2x-6=14。把含有未知数的项(2x),看成是一个数。这样6是减数,2x是被减数,14是差。先求出2x等于多少,再进一步求出x的值。
解方程: 2x-6=14
解:2x=14+6
2x=20
x=20÷2
x=10
三、通过计算,先把原方程化简,再逐步求出方程的解。
例如:3x-2.5×4=5;先计算2.5×4,然后再依照前面的方法求未知数的值。
解方程: 3x-2.5×4=5
解: 3x-10=5
3x=5+10
3x=15
x=15÷3
x=5
又如:4.5x+5.5x+3=30;先计算4.5x+5.5x,然后再依照前面的方法求未知数的值。
解方程: 4.5x+5.5x+3=30
解: (4.5+5.5)x+3=30
10x+3=30
10x=30-3
10x=27
x=27÷10
x=2.7
练习:
解下列方程。
1.2-x=0.4 2.5x=63x+5=20 6x-14=10
7x-2x=5 (8+x)×8=120 5.4-3x=2×2.1 5x-2x-7=14
解方程怎么解
解方程的步骤(1)有括号就先去掉(2)移项:将含未知数的项移到左边,常数项移到另右边(3)合并同类项:使方程变形为单项式(4)方程两边同时除以未知数的系数得未知数的值例如:3+x=18 解: x =18-3 x =15 ∴x=15是方程的解—————————— 4x+2(79-x)=192 解:4x+158-2x=192 4x-2x+158=192 2x+158=192 2x=192-158 2x=34 x=17 ∴x=17是方程的解—————————— πr=6.28(只取π小数点后两位)解这道题首先要知道π等于几,π=3.1415926535,只取3.14,解:3.14r=6.28 r=6.28/3.14=2 不过,x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。有些式子右边枯轿有x,为了简便算,可以调换位置。 一元三次方程求解 一元三次方程的求根公式用通常的演绎思维是作不出来的,没漏肆用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以搜迟(2)可化为x^3=(A+B)+3(AB)^(1/3)x,移项可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得(6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即(8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p......
请问怎么解方程?用计算器
参考TI84 Plus 中文说明
wenku./...=51NaN
怎么做?????解方程 比例
解:设能做a根
126:x=9:5
9x=126*5
x=630/9
x=70根
8+x等于20怎样解方程,
8+x=20
等式两边同时 - 8
x=20-8
x=12
㈡ 一元二次方程的解法 有哪些简便解题步骤
一元二次方程怎么解呢,有哪些解题的步骤呢,下面我为大家提供一元二次方程有哪些解题方法,仅供大家参考。
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=±根号下n+m .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解: 9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解为x1=,x2=
2.配方法:
用配方法芦轿解方程ax2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
方程左边成为一个完全平方式:(x+ )2=
当b^2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x^2-4x-2=0 (注:X^2是X的平方)
解:将常数项移到方程右边 3x^2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2= .
3.公式法:
把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) , (b^2-4ac≥0)就可得到方程的根。
例3.用公式法解方程 2x2-8x=-5
解:将方程化为一般形式:2x2-8x+5=0
∴a=2, b=-8, c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)
∴原方程的解为x1=,x2= .
4.因式分解法:
把方程变形陪衡肆为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次拦渗方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
㈢ 数学解方程有几种方法
1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。
2、应用等式的性质进行解方程。
3、合并同类项:使方程变形为单项式
4、移项:将含未知数的项移到左边,常数项移到右边
例如:3+x=18
解:x=18-3
x=15
5、去括号:运用去括号法则,将方程中的括号去掉。
4x+2(79-x)=192
解: 4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
x=17
6、公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7、函数图像法:利用方程的解为两个以上关联函数图像的交点的几何意义求解。
(3)解析方程简便方法扩展阅读
解方程依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2、等式的基本性质
性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。
(1)a+c=b+c
(2)a-c=b-c
性质2:等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:
a×c=b×c 或a/c=b/c
性质3:若a=b,则b=a(等式的对称性)。
性质4:若a=b,b=c则a=c(等式的传递性)。
㈣ 解方程最简便的方法
解方程的主要步骤就在于去分母去括号,移项 合并同类项 系数化为一
只要一步一步做,就能得到正确的答案
首先看方程中有没有带有分母的分式,我们同时乘分母的最小公倍数,约去分母,然后将括号展开,就得到了去分母去括号后的式子,将未知数移动到方程的左侧,其他数移动到右侧,除以未知数前面的系数,就得到最后的结果。对于一些特殊的方程我们可以通过代入法直接得到结果,对于一元二次方程,可以通过完全开平方形式得到,或者万能公式。以上就是解方程的主要计算方法。