‘壹’ 求100道小学数学简便运算题要答案的
小学数学简便运算归类练习明确四点:A、一般情况下,四则运算的计算顺序是:有括号时,先算 ,没有括号时,先算 ,再算 ,只有同一级运算时,从左往右 。B、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。C、注意,对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果应该相同。我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。D、分数乘除法计算题中,如果出现了带分数,一定要将带分数化为假分数,再计算。一、当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。(a+b+c=a+c+b, a+b-c=a-c+b, a-b+c=a+c-b, a-b-c=a-c-b; a×b×c=a×c×b, a÷b÷c=a÷c÷b , a×b÷c=a÷c×b, a÷b×c=a×c÷b,)12.06+5.07+2.94 30.34+9.76-10.34 ×3÷×3 25×7×4 34÷4÷1.7 1.25÷×0.8 102×7.3÷5.1 17+-7 1-- , 二A、当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。a+b+c=a+ (b + c ), a+b-c=a +(b-c), a-b+c=a –(b-c), a-b-c= a-( b +c);933-15.7-4.3 41.06-19.72-20.28 7-3+ 8+2- 11+7+3 B、当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。a×b×c=a×(b×c), a×b÷c=a×(b÷c), a÷b÷c=a÷(b×c) , a÷b×c=a÷(b÷c),700÷14÷5 18.6÷2.5÷0.4 1.96÷0.5÷4 1.06×2.5×4 13×÷ 29÷× 三A、当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈)a+ (b + c )= a+b+c a +(b-c)= a+b-c a –(b-c)= a-b+c a-( b +c)= a-b-c;19.68-(2.68+2.97) 5.68+(5.39+4.32) 19.68-(2.97+9.68) 7+(-) 5-(-) B、当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈)a×(b×c) = a×b×c, a×(b÷c) = a×b÷c, a÷(b×c) = a÷b÷c , a÷(b÷c) = a÷b×c, 1.25×( 8 ÷0.5) 0.25×( 4 × 1.2) 1.25×( 213×0.8) 9.3÷(4÷) 0.74÷(71×) 四、乘法分配律的两种典型类型A,、括号里是加或减运算,与另一个数相乘,注意分配24×(--+) (12+) ×7 (7-)× B、注意相同因数的提取。0.92×1.41+0.92×8.59 ×-× 1.3×11.6-1.6×1.3 ×11.6+18.4× 五、一些简算小技巧A、巧借,可要注意还哦 ,有借有还,再借不难蛮。 9999+999+99+9 4821-998 B、分拆,可不要改变数的大小哦3.2×12.5×25 1.25×88 3.6×0.25 C,巧变除为乘(除以相当于乘4, 除以相当于乘8,……)7.6÷0.25 3.5÷0.125=7.6÷=7.6×4。=D/注意构造,让我们的算式满足乘法分配律的条件 1.8×99+1.8 3.8×9.9+0.38 ×103-×2- 1.01×9.6 102×0.87 2.6×9.9 ×31+ ×+÷ ×36 ×38 13.5×27+13.5×72+13.5 1.5×7.4+0.6×150%+2÷ 5.3×+2.7×25% 0.67×10.1-6.7 28×21.6-2.8×16 5.6×1.7+0.56×83
‘贰’ 简便计算大全
一、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。适用于加法交换律和乘法交换律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
二、结合律
(一)加括号法
1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689
2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100
(二)去括号法
1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就 要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
1.分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2.提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
3.注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借来还去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆还要注意不要改变数的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000 125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900 综上所述,要教好简便计算,使学生达到计算的时候又快又对,不仅正确无误,方法还很合理、样式灵活的要求。首先要求教师熟知有关内容并绰绰有余,其次对教材还要像导演使用剧本一样,都有一个创造的过程,做探求教法的有心人。在练习设计上除了做到内容要精选,有层次,题形多样,还要有训练智力与非智力技能的价值。
‘叁’ 83×105-53×83的简便方法
83×105-53×83
=83×(105-53)
=83×52
=4316
‘肆’ 六年级简便计算题100道,要有答案和过程
0.4×125×25×0.8
=(0.4×25)×(125×0.8)
=10×100=1000
1.25×(8+10)
=1.25×8+1.25×10
=10+12.5=22.5
9123-(123+8.8)
=9123-123-8.8
=9000-8.8
=8991.2
1.24×8.3+8.3×1.76
=8.3×(1.24+1.76)
=8.3×3=24.9
9999×1001
=9999×(1000+1)
=9999×1000+9999×1
=10008999
14.8×6.3-6.3×6.5+8.3×3.7
=(14.8-6.5)×6.3+8.3×3.7
=8.3×6.3+8.3×3.7
8.3×(6.3+3.7)
=8.3×10
=83
1.24+0.78+8.76
=(1.24+8.76)+0.78
=10+0.78
=10.78
933-157-43
=933-(157+43)
=933-200
=733
4821-998
=4821-1000+2
=3823
I32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
9048÷268
=(2600+2600+2600+1248)÷26
=2600÷26+2600÷26+2600÷26+1248÷269
=100+100+100+48
=348
2881÷ 43
=(1290+1591)÷ 434
=1290÷43+1591÷43
=30+37
3.2×42.3×3.75-12.5×0.423×16
=3.2×42.3×3.75-1.25×42.3×1.6
=42.3×(3.2×3.75-1.25×1.6)
=42.3×(4×0.8×3.75-1.25×4×0.4)
=42.3×(4×0.4×2×3.75-1.25×4×0.4)
=42.3×(4x0.4x7.5-1.25x4x0.4)
=42.3×[4×0.4×(7.5-1.25)]
=42.3×[4×0.4×6.25]
=42.3×(4×2.5)
=4237
1.8+18÷1.5-0.5×0.3
=1.8+12-0.15
=13.8-0.15
=13.65
6.5×8+3.5×8-47
=52+28-47
=80-47
(80-9.8)×5分之2-1.32
=70.2X2/5-1.32
=28.08-1.32
=26.76
8×7分之4÷[1÷(3.2-2.95)]
=8×4/7÷[1÷0.25]
=8×4/7÷4
=8/7
2700×(506-499)÷900
=2700×7÷900
=18900÷900
=21
33.02-(148.4-90.85)÷2.5
=33.02-57.55÷2.5
=33.02-23.02
=10
(1÷1-1)÷5.1
=(1-1)÷5.1
=0÷5.1
=0
18.1+(3-0.299÷0.23)×1
=18.1+1.7×1
=18.1+1.7
=19.8
3.42×5.7+4.3×3.42 8.75×11-8.75 7.42×20.1
5.9×2.7+0.59×73 0.358×14.7+35.8×0.853
2.7×3.014 0.847×35 0.079×0.23