Ⅰ 乘法和除法的简便运算
特殊数字的简便运算
1、特殊数字的简便运算是指含有5,2或它们倍数的乘法运算,例如2x4x5x25这样的乘法运算,可以写成2x5x4x25=10x100=1000.
2、有些数字虽然不是2和5之类的数,但是可以写成因数相乘的形式,便于乘法运算。例如624x125=2x2x2x2x39x5x5x5=2x5x2x5x2x5x2x39=78000
3、需要记住2x5=10,4x25=100,8x125=1000这些常见的快速运算的式子。
首数相同尾数互补的乘法
1、尾数互补是指两个数的十位相同,尾数相加等于10,例如72x78就属于这一类。这种运算是初中所用到的十字相乘法有关,在小学范围只要知道方法,直接使用就可以。
2、它的运算方法是十位相乘,作为乘积的前两位。尾数相乘作为乘积的后两位,一定要注意特例,如果两个数中一个尾数是1,另一个尾数是9,这个时候十位要补个0例如61x69,答案不是369,乃是3609。
3、如果是三位数的话,前两位相乘,后面个位相乘直接放在后面,例如242x248,前面应该是24x25=600,后面应该是2x8=16,运算结果应该是60016。
小数除法的简便运算
小数除法的简便计算与整数除法的简便计算一样,用到的是除法性质。
除法性质1、A ÷ B ÷ C = A ÷ ( B × C )
如:42÷2.8 =42÷( 0.7 × 4 )= 42 ÷ 0.7 ÷ 4 = 60 ÷ 4 = 15
如:420÷2.5÷4 = 420÷(2.5×4 )= 420 ÷ 10 = 42
除法性质2、 (a-b)÷c=a÷c-b÷c
除法性质3、 A ÷ ( B ÷ C ) = A ÷ B × C
除法性质4、 A × ( B ÷ C ) = A × B ÷ C
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
示例:
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
示例:
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
示例:
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
示例:
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
数学乘法运算定律
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成“·”。
2、乘法结合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc