① 常用的求导公式大全
常用的求导公式大全:
1、(sinx)'=cosx,即正弦的导数是余弦。
2、(cosx)'=-sinx,即余弦的导数是正弦的相反数。
3、(tanx)'=(secx)^2,即正切的导数是正割的平方。
4、(cotx)'=-(cscx)^2,即余切的导数是余割平方的相反数。
5、(secx)'=secxtanx,即正割的导数是正割和正切的积。
6、(cscx)'=-cscxcotx,即余割的导数是余割和余切的积的相反数。
7、(arctanx)'=1/(1+x^2)。
8、(arccotx)'=-1/(1+x^2)。
9、(fg)'=f'g+fg',即积的导数等于各因式的导数与其它函数的积,再求和。
10、(f/g)'=(f'g-fg')/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去老弊被除函数与除函数的导数的积的差为被除式。
11、(f^(-1)(x))'=1/f'(y),即反函数的导数是中亮原函数导数的卖含宽倒数,注意变量的转换。
需要记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。
② 导函数的简单求法
在函数上取适当的点,可以求得此处的斜率。但是这样的话,就必须逐一计算各点的导数,很麻烦。要是能对曲线整体“简单地”求导就好了。
数学中有公式这种工具,使用它只要代入数字就能得到答案。
做任何工作都应事先准备好各种工具以提高效率。就像修车需要螺丝刀和扳手一样,要高效熟练地运算导数,也要事先准备好工具,这样才更便于计算。下面我们就来介绍导数公式。
讲解之前希望各位了解一件事。公式虽然是方便的工具,但也有人会“公式中毒”,从一开始就死背公式。在他们看来,“对公式的理解可以暂且放在一边,只要把公式背下来套用就可以了”。有些人从中学开始就数学中毒,但这样的数学学习与驯猴无异,其结果将很悲惨。
我们是人类,所以要好好思考。虽然理解自己使用的工具会费些工夫,但遇到问题时,你会发现“了解工具”所带来的帮助远远大于你为此付出的努力。
接下来我们还要继续谈一下导数公式的问题,请认真看。
刚才已经讲了,公式是工具,学习导数需要3个基本公式。没有公式怎么办,可以昨天学习的求导函数的方法来求就是下面这个东西
(注意昨天课上介绍的经验,先求y的变化量,再求平均变化率,再求极限,这样可以少写几几个lim,你不就是想这样吗?)
它能解决所有的求导问题。不过,如果你想更加简便地解决导数问题,还是尽可能掌握运算工具为好。
下面这些都是关于x的求导公式。f(x)和g(x)都是关于x的函数。
求导的基本公式
1. (p为常数)
2. (p为常数)
3.
常函数的导数是0,昨天我写的什么是导函数里面有介绍,还求了其他几个常见函数的导函数,你要是完全 忘了,就点 这里
下面我们介绍一下最基本的工具—y=p,y=px(p为常数)的求导公式。
前面我们仅就曲线函数的导数加以说明,这并不是说直线函数不能求导。实际上,直线函数的求导与曲线函数思路相同,只是求导对直线函数求导意义不大或没有必要。因此,我们不予考虑。
原本导数是用来求某一点的斜率的。曲线图形不断变化,要探究某一点的斜率很难。但是对直线来说,无论选择哪一点,直线的斜率都一样。
因此无需考虑直线的导函数,直接使用导函数计算公式就可以了。
我们之所以用极限的理念求曲线上某一点的斜率,是因为无法通过在曲线上选取两点求斜率。直线任选两点就能求出其斜率,没有必要求导。
我想你已经理解了上述阐述。对以x为自变量的函数y=p,y=px(p为常数)关于x求导,实际就是求直线的斜率,它们原来的斜率就是0和p,因此对y=p求导的结果为0,对y=px求导的结果为p。
下面我们要确认一下,对两个函数的和——f(x)+g(x)——求导,会得到 。关于x对f(x)求导得到
因此,关于x对f(x)+g(x)求导,得到
整理算式,得到
再次整理算式,得到
也就是
可能有人感觉头疼,我再总结一下,简单来说,就是“加法与求导先做哪个都可以”!
但该函数和的求导公式非常重要。没有该公式,求导就像乘坐没有车轮的汽车,无法前行。它使用起来很方便。
③ 求导数的三种方法
求导数公式的方法如下:
(1)求函数y=f(x)在x0处导数的步骤:
① 求函数的增量Δy=f(x0+Δx)-f(x0)
② 求平均变化率
③ 取极限,得导数。
(4)复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中局陵间变量对自变量的导数--称为链式法则。
导数的竖凯定义:
导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量。
④ 导数的四则运算法则
导数的四则运算法则:
1、(u+v)'=u'+v'
2、(u-v)'=u'-v'
3、(uv)'=u'v+uv'
4、(u/v)'=(u'v-uv')/v^2
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
(4)求导函数正负的简便方法扩展阅读:
导数求导法则:
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。
2、两个函数的乘积的导函数:一导乘二+一乘二导。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。
4、如果有复合函数,则用链式法则求导。
参考资料:网络-导数