论文数据方法有多选题研究、聚类分析和权重研究三种。
1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。
拓展资料:
一、回归分析
在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。
最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显着性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。
二、方差分析
在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显着影响,从而找出较优的实验条件或生产条件的一种数理统计方法。
人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。
在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。
例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显着差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。
三、判别分析
判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。
这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。
四、聚类分析
聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。
比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。
五、主成分分析
主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。
在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。
主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。
如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
六、因子分析
因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。
在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。
因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。
例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。
例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。
接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。
七、典型相关分析
典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。
Ⅱ 谁知道做毕业论文时如何进行文献整理和数据处理
我在这里想总结一下在做毕业论文过程中关于“如何进行文献整理以及数据处理”的经验。数据录入:1. 在施测之前,就要对变量的排列有总体的规划,尽量每一次施测的变量排序一致,那样以后录入时才不会混淆;2. 数据录入时,往往用的是数字代码,此时务必做好各个代码所代表的含义的备份,建议用记事本保持,以防时间长了遗忘,带来不必要的麻烦;数据处理:1. 务必做好数据备份,对不同的转换,建立不同的文档;2. 建立数据处理日志,以防当你的数据处理逐渐增多、数据有所转换之后不至于混淆,以及方便进行数据回述和检查;3. 建立“数据”和“结果”文件夹,分开保存数据和处理结果,避免不必要的混乱;4. 在给数据处理的程序命名时,建议按照处理顺序写上“序号.程序处理名称”,如“1.频数分析”、“2.因素分析”,这样可以一目了然地了解你的数据处理过程和数据处理内容;5. 保存具有代表性的数据处理的程序,这样做的好处是,一方面日后进行相同的数据处理时可以直接“”“paste”,很方便;另一方面也避免时日一长遗忘了部分程序;文献整理:1. 所收集的中外文献卷帙浩繁,建议保存文件名包括一下内容:“年份.序号.标题”;如“2007.1.parent-children communication.pdf”、“2007.2.gender dif.pdf”;2. 对所有收集的文献进行归类整理,分别放置于不同的文件夹;3. 有时你需要对外文文献摘要整理和翻译,此时建议你把摘要保存于当前文献所在的文件夹;或者专门建立“摘要整理/翻译”文件夹,以保存各类专题的摘要翻译,以防文献一多便混乱了,想要的时候找不到;4. 外文文献摘要整理文件名格式:“摘要整理.专题名.整理日期”。
数据分析法论文研究方法怎么写
数据分析法论文研究方法怎么写,毕业论文对大学生是很重要的一项内容,如果毕业论文不通过就可能毕不了业了,论文的数据是很重要的,如果你的论文数据不准确,就没研究意义了, 下面我和大家分享数据分析法论文研究方法怎么写。
确定数据分析方法
首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。
另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。
搜集整理实验数据
接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。
那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。
在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。
给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。
在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。
使用软件进行分析
接下来第三部分就是使用软件进行数据分析,本部分是非常重要的一个部分。因而可能会出现各种各样的问题。
在本部分大家可以通过软件对所得数据按照前面选定的研究方法进行分析。实践是检验一切的'唯一标准。有很多问题往往都是在进行了数据分析以后才暴露出来的。
根据自身经历,通过软件分析了实验数据以后,才发现结果非常不理想,此时就需要及时跟论文指导老师沟通去进行数据分析方法的调整。
在使用软件进行数据分析之前,一切都是未知的,只有分析之后才能对症下药。所以本环节大家一定要高度重视,根据分析结果及时对研究方法或者样板数据进行微调。
梳理归纳实验结果
最后一个部分就是梳理和归纳实验数据分析结果,此时,大家要讲结果进行合理化解释。同时也需要大量参考先前学者的优秀文献,寻找类似的结果或者解释,从而为自己的实验结果的合理解释提供参考。
有的实证性论文的课题研究可能还不止一个阶段,因为很多研究方法会分阶段进行,比如考虑外部因素的影响或者投出产入效率等等,所以大多研究方法都是两阶段或者三阶段。此时就需要大家根据论文整体性原则,及时对实验结果进行分阶段阐述,所以大家一定要自己思维清晰,层次分明。
这一部分也是将来在毕业论文答辩需要大家重点向答辩老师介绍和阐述的,一定要熟稔于心。
1、调查法
它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。
2、观察法
观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。
3、实验法
实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。
4、文献研究法
文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。
5、实证研究法
在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。