1. 88x125用简便计算(脱式计算)怎么算
解:88x125
=8x125x11
=1000x11
=11000
分析:本题简便计算的关键在于要利用8x125=1000的常用式子,然后将88分解成8x11.而后就可算出结果是11000.
80x125+8x125
77X125
=(80-3)X125
=80X125-3X125
=10000-375
=9625。
88x125
=(80+8)X125
=80X125+8X125
=10000+1000
=11000。
有的,练式为:432-(361-9)+(88乘125) 432-360+11000 72+11000 =11072
4088x125
=511x8x125
=511x1000
= 511 000
希望帮到你 望采纳 谢谢 加油
48×125
=6×(8×125)
=6×1000
=6000
或48×125
=(48÷8)×(125×8)
=6×1000
=6000
简便计算
88x15
=(8+80)x15
=8x15+80x15
=120+1200
=1320
88x123怎么简便计算
88x123
=(8+80)×(125-2)
=8×125-8×2﹢80×125﹣80×2
=1000-16+10000-160
=1000+10000-(16+160)
=11000-176
=10824
原式=
(38x2)x(125x8)
=76x1000
=76000
供参考。
48x125x9
=6x8x125x9
=6x9x(8x125)
=54x1000
=54000
2. 五年级上册脱式怎么简便计算
五年级上册脱式简便计算如下:
1、24.6-3.98+5.4-6.02
解析:此题利用加法交换结合律,凑整再计算。步骤如下:
24.6-3.98+5.4-6.02
=(24.6+5.4)-(3.98+6.02)
=30-10
=20
2、27×17/26
解析:此题先用加法分配律,把27转换成(26+1),再利用乘法结合律,使得运算简便。
27×17/26
=(26+1)×17/26
=26×17/26+1×17/26
=17+17/26
=17又17/26
3、528-99
解析:利用凑整法和减法结合律计算,先利用凑整法把99变换为(100-1),再运用a-b-c=a-(b+c)来简便计算,步骤如下:
528-99
=528-(100-1)
=528-100+1
=428+1
=429
4、1.2×2.5+0.8×2.5
解析:运用提取公因数的方法,公式:ac+ab=a(b+c),提取公因数2.5,1.2和0.8相加正好凑整数,使得运算简便。
1.2×2.5+0.8×2.5
=(1.2+0.8)×2.5
=2×2.5
=5
5、2.96×40
解析:此题先利用乘法分配律,把2.96×40转换成29.6x4,再利用乘法结合律来简便计算。
2.96×40
=29.6x4
=(30-0.4)x4
=30×4+0.4×4
=120-1.6
=118.4
3. 用脱式计算,怎样简便就怎样算。25X101=
脱式计算:25×101。
解题思路:在做这种脱式运算的时候,应该要先考虑括号里面的计算。然后再考虑先乘除计算,再进行加减运算。那么我们再具体运算的时候,就应该考虑上面的这些运算步骤,一步一步计算得到答案。所以这里,我们可以尝试将101话为100+1,然后使用乘法运算的分配律进行计算,这样会比较简便一些。
详细的脱式计算过程如下
25×101
=25×(100+1)
=25×100+25×1
=2500+25
=2525
所以,可以通过上面的简便计算过程,得到答案是2525。
验算:解题思路:当我们计算除法运算的时候,尽量选择被除数和除数都是整数。如果被除数和除数之间有小数的话,可以化成全是整数进行计算。具体计算的时候,应该从被除数的高位开始,依次除去除数,得到商,余数保留,接着下一步计算。如果是无限循环小数,可以按要求计算到小数点后几位。
2525÷101=25
第一步:252÷101=2,余50
第二步:505÷101=5
所以,可以通过竖式这样的除法运算进行验算,得到的答案是25。
4. 脱式计算的简便运算
脱式计算的简便运算例子73×12+73×48
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
73×12+73×48
=73×(12+48)
=73×60
=4380
(4)怎么用简便方法计算脱式运算扩展阅读=>竖式计算-计算结果:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;
解题过程:
步骤一:3×60=180
步骤二:7×60=4200
根据以上计算结果相加为4380
存疑请追问,满意请采纳
5. 用脱式要简便计算
脱式计算是一个数学学科术语,即递等式计算,把计算过程完整写出来的运算,也就是脱离竖式的计算。
(1)393+287-93+13
=(393-93)+(287+13)
=300+300
=600。
(2)125x4x8x25
=(125x8)x(4x25)
=1000x100
=100000。
(3)375x42+25x42
=(375+25)x42
=400x42
=16800。
(4)36x99
=36x(100-1)
=3600-36
=3564。
(5)3000÷25÷4
=3000÷(25x4)
=3000÷100
=30。
(6)99x75+75
=(99+1)x75
=100x75
=7500。
6. 脱式计算,简便方法
【脱式计算】
脱式计算就是把计算过程完整写出来的运算,也就是脱离亩亩竖迟或式的计算。
【计算方法】
主要掌握的是记住要先算乘、除法,后算加、减法。在乘除法连继计算时中,要按从左往右的顺序依次计算。遇到括号,要首先计算括号内部。在脱式过程中要按运算顺序划出运算顺序线,还要做到“三核对”,一要核对从书上把题抄到作业本上数字、符号是否抄对。二要核对从横式抄到草稿竖式的数字、符号是否抄对。三要核对把草稿竖式上的得数,抄到横式上是否抄对,小数点是否点对地方,有无遗漏。
四则运算顺序
在四则运算中,加法和减法叫做第一级运算,乘法和除法叫做第二级运算。含有两种或两种以上的运算的算式,通常称为混合运算。加、减、乘、除的混合运算也叫做四则混合运算。在四则混合运算中,规定的计算先后次序,称为运算顺序。数学上规定的四则运算顺序如下:
(1)同级运算在一个算式中,如果只含有同级运算,应当按照从左到右的次序进行运算。这就是说,只含有加减法,或者只含有乘除法的混合运算,它们的运算顺序是从左到右依次计算。
(2)一至二级运算
在一个算式中,如果既含有第一级运算又含有第二级运算,那么,应先算第二级运算,后算第一迅旦森级运算。即“先算乘法和除法,后算加法和减法”,简称“先乘除,后加减”。
(3)含括号运算
如果要改变上面所说的运算顺序,就要用到括号。常用到的括号有三种:小括号,记作();中括号,记作[ ;大括号,记作{}.使用括号的时候,两边拉,中间加。要先用小括号,再用中括号,最后用大括号。
在一个算式中,如果含有几种括号,应该先算小括号里面的乘或除法,再算中括号里面的加或减法,最后算大括号里面的。在计算时,应该先把括号里面的式子按照前面所说的顺序进行计算,再把所得的结果和括号外面的数按照同样的顺序进行计算。
【简便运算】
简便运算,就是利用运算定律或者是运算性质,巧用特殊数之间的特性进行巧算。
乘法分配律为:两个数的和与一个数相乘,先将它们与这个数分别相乘,再相加,积不变.即:(a+b)×c=a×c+b×c.反过来则:a×c+b×c=(a+b)×c
操作方法:
1、利用运算定律。利用加法的交换律和结合律,乘法的交换律、结合律和分配律,可以使计算简便。
2、分解因数。有的特殊数相乘是可以得到整数的,比如25和4,125和8等等,在我们遇到这些数字时,可以想办法把它们变成能得到整数的数字。
3、数字变形。有的列式中的数字不能用简便方式,但是我们把一些数字变形后就可以采用简便方式,这时我们就要给数字变形了。
4、等差数列。有些算式的相邻数字的差是相同的,这时我们可以采用等差数列公式算式。
5、设数法。有些算式中,有的数字是相同的,但是式子又比较长,这时我们可以把相同的数字组成的算式设为一个字母,然后把式子中相应的换成字母,再计算,就简便多了。
6、凑整法。有些小数与整数相差很少,又有规律,这是我们可以凑成整数计算。
7、拆分法。拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
7. 三年级脱式计算的简便方法是什么
脱式计算又叫做递等式计算,记得要把等号写在算式的前面,按照运算规律一步一步进行计算。
提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
借来借去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
拆 分 法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
加法结合律
注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
拆分法和乘法分配律结
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再现: 57×101=57×(100+1)
利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062 x5)+10-10-20+21
利用公式法
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3):乘法(与加法类似):
交换律,axb=bxa,
结合律,(axb)xc=ax(bxc),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似):
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例 题
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。“带符号搬家”)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4:
150-(100-42)
=150-100+42
(去括号时,括号前面是减号,括号里面的运算符号要变成逆运算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(运用除法性质)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(运用除法性质)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48x25x3)÷8
=48÷8x25x3
=6x25x3=450.