A. 连加法的简便计算方法
连加法的简便计算方法是:
1.有相同加数的,可以用乘法计算,有几个相同加数就乘以几。再加不同的加数。
2.没有相同加数的,把能够凑成整十整百的数先加再加其余的数。也就是利用乘法结合律和交换律。
B. 几个相同的数相加,用什么法计算更方便
求几个相同加数的和,用(乘)法计算比较简单。
乘法:求两个数乘积的运算。
1、乘法的含义
乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.
2、乘法算式的写法和读法
⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数。
然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。
如:4+4+4=12改写成乘法算式是4×3=12或3×4=12
⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。
(2)很多个数相加有什么简便的方法扩展阅读
“几和几相加”与“几个几相加”区别
求几和几相加,用几加几;如:求4和3相加是多少,用加法(4+3=7)。求几个几相加,用几乘几。如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)
补充:几和几相乘,求积,用几×几。如:2和4相乘用2×4=8
2个乘数都是几,求积,用几×几。如:2个8相乘用8×8=64
一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。“5+5+5”写成乘法算式是(3×5=15)或(5×3=15),
都可以用口诀(三五十五)来计算,表示(3)个(5)相加,3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15。
C. 求加法心算速算口诀或技巧
加法速算技巧
1、 不进位的加法算式:(一定要先看清楚进不进位)
加法速算技巧
A :两位数加一位数:先写上十位数,再接着写上个位数的和。
B 两位数加两位数:先写十位数的和,再写个位数的和
C 多位数加多位数:从高位起,依次写上相同位上的数的和
2、进位加法算式(一定要观察是否进位)
加法速算技巧进位加法的关键是向高一位进1,进1既然已经是一定的事情,可不可以先进1呢?观察好后可以从高位先算起。
A 两位数加一位数:先写上十位数加1的和,再接着写个位数的和的个位数(用二十以内加法口诀)
B 两位数加一位数:先写上两位数凑成整十后的十位数,再写上一位数分出一个数后剩余的数。(即把一位数分开,帮两 位数凑十)
加法速算技巧 15+8= 过程:15+5=20 先写2,8分出5后剩余3,再接着写3。
(3)很多个数相加有什么简便的方法扩展阅读:
加法是完全一致的事物也就是同类事物的重复或累计,是数字运算的开始,不同类比如一个苹果+一个橘子其结果只能等于二个水果就存在分类与归类的关系。
减法是加法的逆运算;乘法是加法的特殊形式;除法是乘法的逆运算;乘方是乘法的简便形式;开方是乘方的逆运算;对数是在乘方的各项中寻找规律;由对数而发展出导数;然后是微分和积分。数字运算的发展,是更特殊的情况,更高度重复下的规律。
有许多二进制操作可以被视为对实数的加法运算的概括。 抽象代数领域集中关注这种广义的运算,它们也出现在集合理论和类别理论中。
抽象代数中的加法
矢量加法:
在线性代数中,向量空间是一个代数结构,允许添加任何两个向量和缩放向量。 一个熟悉的向量空间是所有有序的实数对的集合;有序对(a,b)被解释为从欧几里德平面中的原点到平面中的点(a,b)的向量。 通过添加它们各自的坐标来获得两个向量的和:
集合理论和类别理论中的加法
增加自然数的方法是在集合理论中添加序数和基数。这些给出了两个不同的概括,即自然数。与大多数加法操作不同,序数的加法是不可交换的。 然而,增加基数是与不相交联合操作密切相关的交换操作。
在类别理论中,不相交加法被视为特殊情况,一般可能是所有加法概括中最为抽象的。 如直接总和和楔子总和,被命名为添加的联系。
D. 加法简便运算
加法的简便算法,就是要凑成整数,即:
整十、整百、整千……的数,以便于简算。
如:
26+65+74=(26+74)+65=100+65=165;
123+965+877=(123+877)+965=1000+965=1965;
163+836+9=163+837-1+9=(163+837)+8=1000+8=1008;
……
在数的运算中,有加(+)、减(-)、乘(×)、除(÷)四种运算,我们在数学上又为了能更简便计算它们,简称称作简算,简算有以下几种(公式详见在常用特殊数的乘积、及简算公式):
加法:(加法交换律) (加法结合律)(近似数)
乘法:(乘法交换律)(乘法结合律)(乘法分配律)(乘法分配律变化式(四个))
减法:(减法的基本性质)(近似数)
除法:(除法的基本性质)(商不变的性质)
这是小学数学计算题中最常见的一种。从学生一开始接触计算就从各个不同的角度渗透了简便运算的思想,到了四年级在计算题中简便运算则做为独立的题型正式出现,它是计算题中最为灵活的一种,能使学生思维的灵活性得到充分锻炼,对提高学生的计算能力将起到非常大的作用。 何谓简便运算,这是一个非常简单的问题,但要正确地理解它,决不能为了追求简便的形式而进行简便运算。对此,我的理解是:简便运算应该是灵活、正确、合理地运用各种定义、定理、定律、性质、法则等等,改变原有的运算顺序进行计算,通过简便运算要大幅度地提高计算速度及正确率,使复杂的计算变得简单 。也就是说:最重要的是灵活、合理地运用各种定义、定理、定律、性质、法则。尤其要强调“灵活”、“合理”。下面就我在教学中遇到的情况,谈谈我的看法。
E. 求几个()加数的和用()计算比较简便
解答:
求几个(相同)加数的和用(乘法)计算比较简便
这是在初学乘法时学的类似定义的知识点
比如说
以前在计算2+2+2时,是逐项相加
现在就是2*3=6
例如:
求几个(数相加)的和,用乘法计算比较简便。
比如:
3+3+3+3
=3×4
=12
(5)很多个数相加有什么简便的方法扩展阅读:
“4.9+0.1-4.9+0.1”这是小学数学第八册练习二十七第二题中的一道非常简单的常见简便运算题。当我给学生布置了这道题后,我以为学生会毫不犹豫地使用加法交换率和结合率,顺利完成此题,但是批改学生的作业时,却发现了以下三种情况:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
F. 加减法简便运算的技巧和方法
加减法简便运算的技巧和方法如下:
算基森冲术运算介绍:
算术运算简称运算。指按照规定的法则和顺序对式题或算式进行运算,并求出结果的过程。包括:加法、减法、乘法、除法、乘方、开方等几种运算形式。其中加减为一级运算,乘除为二级运算,乘方、开方为三级运算。在一道算式中,如果有几级运算存在,则应先进行高级运算,再进行低一级的运算。
如:3+22×4=3+4×4=3+16=19;如春中果只存在同级运算;则按从左至右的顺序进行;如果算式中有括号,则应先算括号里边,再按上述规则进行计算。如:(3+2)2×4=52×4=100。运算和计算略有区别,计算是指把横式中的数按运算符号和规定的顺序求得结果,可以按运算法则,也可以按口算或其他简便的方式直接求得结果。而运算则是指求得结果的过程。