① 小学数学简便计算公式大全
总结了小学数学的计算公式,及其灵活运用,简便计算技巧。
①加法
加法交换律:a+b=b+a;
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
②减法
a-b=-(b-a)
a-b-c=a-(b+c)
减法有一个口诀:加括号,变符号。
③乘法
乘法交换律:a x b=b x a;
乘法结合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小学数学试题中常考的一种题型-计算复杂数式。
经常就会用到乘法分配律,来提取公因数,简化计算。
【例1】计算:7.19x1.36+3.13x2.81+1.77x7.19
分析:这道题就是加法结合律,乘法交换律,乘法分配律的综合运用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等于0);
a x b÷c=a÷cxb(c不等于0);
以上公式是解四则运算题目的基本关系式。
灵活学习,灵活运用。
它们除了正着用,有时候还得会倒着用。
【例2】计算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想办法把凑出一个3.4,然后让3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已经凑出来了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也凑出来了)
=47.9x(6.6+3.4)+17
=496
注意:例2题目中我们将乘法分配律倒着使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外还用到了一个特别的公式。
529x0.34=529÷10x10x0.34
这个公式总结出来,即:
a x b=a÷c x c x b(c不等于0)。
② 小学乘法公式有哪些
乘法:
因数x因数=积
积÷一个因数=另一个因数
乘法的交换律:两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。a×b=b×a
乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。a×b×c=a×(b×c)
使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
③ 小学的简便运算公式有哪些
1、 乘法运算
每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、倍数计算
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数= 1倍数
3、 路程计算
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、 价格计算
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、效率计算
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、加法计算
加数+加数=和
和-一个加数=另一个加数
7、 减法计算
被减数-减数=差
被减数-差=减数
差+减数=被减数
8、乘法问题
因数×因数=积
积÷一个因数=另一个因数
④ 小学数学简便运算(转)
一、简算方法
1、运算定律
加法:
加法交换律a+b=b+a
加法结合律(a+b)+c=a+(b+c)
乘法:
乘法交换律a×b=b×a
乘法结合律(a×b)×c=a×(b×c)
乘法分配律(a+b)×c=a×c+b×c
减法:
减法的性质a-b-c=a-(b+c)
除法:
除法的性质a÷b÷c=a÷(b×c)
2、添(去)括号
括号前是+、×,不变号;括号前是-、÷,要变号。
变号规则:+变-,-变+;×变÷,÷变×。
3、移位置
带号搬家:移位置时要连同数字前面的符号一起移动。
二、解题技巧
有些同学,你考他运算定律,他倒背如流,但一遇到具体题目,就好像老虎咬刺猬,不知从何下手。归根结底,还是对各种简算方法理解不到位,不清楚具体的运用场景。
接下来就具体讲一下在什么情况下运用何种简算方法。
首先,需要知道两个概念:同级运算、两级运算。
加、减法是第一级运算,乘、除法是第二级运算。一个算式,如果只含有加、减法或只含有乘、除法,我们就说这个算式是同级运算;一个算式,如果既含有加、减法又含有乘、除法(通常是有乘有加或有乘有减),我们就说这个算式是两级运算。
Ⅰ、两级运算
只能运用乘法分配律!
例1、25×(4+8)
=25×4+25×8
=100+200
=300
有括号,分别相乘,再相加。
例2、17×23-23×7
=23×(17-7)
=23×10
=230
无括号,找相同数。
相同数提出来,剩下的写括号里,中间是+就写+,中间是-就写-。
例3、99×38+38
=38×99+38×1
=38×(99+1)
=38×100
=3800
例4、88×201-88
=88×201-88×1
=88×(201-1)
=88×200
=17600
是两级运算,但不是标准形式的,可通过适当的变形转化成标准形式。熟练之后第一步可省略。
Ⅱ、同级运算
1、只含有加法
综合利用加法交换律和结合律,把能凑整的凑一块,用括号括起来。
例5、5+137+45+63+50
=(5+45+50)+(137+63)
=100+200
=300
2、只含有乘法
综合利用乘法交换律和结合律,把能凑整的凑一块,用括号括起来。
例6、8×25×125×4
=(125×8)×(25×4)
=1000×100
=100000
3、连减
减法的性质
例7、347-148-52
=347-(148+52)
=347-200
=147
4、连除
除法的性质
例8、16000÷125÷8
=16000÷(125×8)
=16000÷1000
=16
5、有括号
去括号
例9、740÷(37×4)
=740÷37÷4
=20÷4
=5
注意要变号。
6、尾数相同
移位置
例10、445+87-45
=445-45+87
=400+87
=487
Ⅲ、两数相乘,要拆项
两数相乘直接适用的只有乘法交换律,并不能使计算简便,所以需要通过拆项变成同级运算或两级运算。
1、有一个数接近整百(整十、整千类似)
将接近整百的数拆成“整百+几”或“整百-几”。
例11、87×99
=87×(100-1)
=87×100-87×1
=8700-87
=8613
例12、103×12
=(100+3)×12
=100×12+3×12
=1200+36
=1236
2、有一个数是25或125
遇25拆4,遇125拆8
例13、25×28
=25×(4×7)
=25×4×7
=100×7
=700
例14、125×72
=125×(8×9)
=125×8×9
=1000×9
=9000
也可以拆成两级运算
125×72
=125×(80-8)
=125×80-125×8
=10000-1000
=9000
三、易错解析
1、乘法分配律只乘了第一个数
例15、125×(80+8)
错解:
125×(80+8)
=125×80+8
=10000+8
=10008
正解:
125×(80+8)
=125×80+125×8
=10000+1000
=11000
2、同级运算变两级运算
例16、25×32
错解:
25×32
=25×(4×8)
=25×4+25×8
=100+200
=300
正解:
25×32
=25×(4×8)
=25×4×8
=100×8
=800
3、移位置,忘带号搬家
例17、253-87+53
错解:
253-87+53
=253-53+87
=200+87
=287
正解:按运算顺序计算即可。
4、添(去)括号,-、÷忘变号
例18、3700÷25×4
错解:
3700÷25×4
=3700÷(25×4)
=3700÷100
=37
正解:按运算顺序计算即可。
5、拆项时出错
例19、37×99
错解:
37×99
=37×(99+1)
=37×100
=3700
正解:
37×99
=37×(100-1)
=37×100-37×1
=3700-37
=3663
四、拓展提高
两级运算,无括号,无相同数。
例20、46×32+27×64
=46×32+54×32
=32×(46+54)
=32×100
=3200
找倍数,利用积的变化规律转化成乘法分配律标准形式。