Ⅰ 有哪些逻辑推理的方法
1、三段论
是由两个含有一个共同项的性质判断作前提,得出一个新的性质判断为结论的演绎推理。三段论是演绎推理的一般模式,包含三个部分:大前提——已知的一般原理,小前提——所研究的特殊情况,结论——根据一般原理,对特殊情况作出判断。
2、假言推理
是根据假言命题的逻辑性质进行的推理。分为充分条件假言推理,必要条件假言推理和充分必要条件假言推理三种。
3、选言推理
是至少有一个前提为选言命题,并根据选言命题各选言支之间的关系而进行推演的演绎推理。一般由两个前提和一个结论所组成。
根据组成前提的命题是否皆为选言命题,可分为纯粹选言推理和选言直言推理。按一般习惯用法。选言推理主要指选言直言推理。根据选言前提各选言支之间的关系是否为相容关系,可分为相容的选言推理和不相容的选言推理。
相关定义:
①演绎推理是从一般到特殊的推理;
②它是前提蕴涵结论的推理;
③它是前提和结论之间具有必然联系的推理。
④演绎推理就是前提与结论之间具有充分条件或充分必要条件联系的必然性推理。
演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。这是因为演绎推理保证推理有效的根据并不在于它的内容,而在于它的形式。演绎推理的最典型、最重要的应用,通常存在于逻辑和数学证明中。
Ⅱ 数学推理方法有哪几种
数学方法即用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序。同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法。数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法。
推理方法有两种:
1,常规推导方法,从公理或已知的命题推导出该命题成立,即证明该命题是已知公理的子命题。要点是要理清命题以及给出条件的含义,找出该命题的等效含义和条件,最好是转化为数值等式关系,然后符号演算,这种演算方法通用性强,在一些特殊情况下也转化为直观的几何关系,通过直观的几何关系证明,但几何的方法需要灵感,不通用。
2,归谬方法,假设该命题不成立,推导出矛盾的命题,从而证明该命题成立。适用的场合比较有限,不作介绍。
Ⅲ 推理是数学的基本思维,推理一般包括什么推理
1、演绎推理
演绎推理(Dective Reasoning)是由一般到特殊的推理方法。与“归纳法”相对。推论前提与结论之间的联系是必然的,是一种确实性推理。
运用此法研究问题,首先要正确掌握作为指导思想或依据的一般原理、原则;其次要全面了解所要研究的课题、问题的实际情况和特殊性;然后才能推导出一般原理用于特定事物的结论。
包括三段论、假言推理和选言推理等。在教育工作中, 依据一定的科学原理设计和进行教育与教学实验等,均离不开此法。
2、归纳推理
归纳推理是一种由个别到一般的推理。由一定程度的关于个别事物的观点过渡到范围较大的观点,由特殊具体的事例推导出一般原理、原则的解释方法。
自然界和社会中的一般,都存在于个别、特殊之中,并通过个别而存在。一般都存在于具体的对象和现象之中,因此,只有通过认识个别,才能认识一般。
(3)高中数学中推理方法有哪些扩展阅读
归纳推理离不开演绎推理。其一,为了提高归纳推理的可靠程度,需要运用已有的理论知识,对归纳推理的个别性前提进行分析,把握其中的因果性,必然性,这就要用到演绎推理。
其二,归纳推理依靠演绎推理来验证自己的结论。例如,俄国化学家门捷列夫通过归纳发现元素周期律,指出,元素的性质随元素原子量的增加而呈周期性变化。
后用演绎推理发现,原来测量的一些元素的原子量是错的。于是,他重新安排了它们在周期表中的位置,并预言了一些尚未发现的元素,指出周期表中应留出空白位置给未发现的新元素。
Ⅳ 数学推理常用方法
1.推理和推理规则 推理 推理规则 两规则 替换规则 2. 证明方法 直接证明方法 CP规则 反证法 1.推理和推理规则 什么是推理? 推理的例子:设x属于实数, P: x是偶数, Q: x2是偶数。 例1. 如果x是偶数, 则x2是偶数。 x是偶数。 x2是偶数。 1、推理和推理规则 刚才的例子表明了研究推理规则的重要性。 推理规则:正确推理的依据。 任何一条永真蕴含式都可以作为一条推理规则。 例:析取三段论: 如果,P:他在钓鱼,Q:他在下棋 前提:他在钓鱼或下棋; 他不在钓鱼 结论:所以他在下棋 定义1:若H1∧H2∧ …∧Hn ? C, 则称C是H1, H2, …, Hn的有效结论。 特别若A ? B, 则称B是A的有效结论,或从A推出B。 常用的推理规则 1) 恒等式(E1~E24) 2) 永真蕴含式(I1~I8,表1.5-1) 3) 替换规则,代入规则 4) P规则和T规则 P规则:(前提引入) 在推导的任何步骤上,都可以引入前提。 T规则:(结论引用) 在推导任何步骤上所得结论都可以作为后继证明的前提。 永真蕴含式 运用推理规则形式化证明 例1:考虑下述论证: 1. 如果这里有球赛, 则通行是困难的。 2. 如果他们按时到达, 则通行是不困难的。 3. 他们按时到达了。 4. 所以这里没有球赛。 前 3 个断言是前提, 最后1个断言是结论, 要求我们从前提推出结论。 3. 证明方法 1). 无义证明法 证明 P ? Q为真,只需证明P为假。 2). 平凡证明法 证明 P ? Q为真,只需证明Q为真。 无义证明法和平凡证明法应用的次数较少, 但 对有限的或特殊的情况, 它们常常是重要的。 3. 证明方法 证: (1) C?D P (2) ?( ? C) ?D T,(1),E1 (3) ? C → D T,(2),E14
Ⅳ 简述学前儿童数学教育实践中,常用的游戏法有几种分别是什么
(1) 、操作性数学游戏。
(2) 、情节性数学游戏。
(3) 、竞赛性数学游戏。
(4) 、运动性数学游戏。
(5) 、运用各种感官的数学游戏。
(6) 、数学智力游戏。
在几何、度量、数据分析、概率等方面,学生应该巩固和扩展他们在低年级所学的知识。不断发展他们在数学方面,特别是在问题解决,数学表述,推理论证等方面的熟练程度。
ICME 9的高中数学教学组一致认为,数学思想方法的教学应该成为高中数学课程的重要部分。数学建模思想受到与会专家的普遍重视。
(5)高中数学中推理方法有哪些扩展阅读:
任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括:
经典教育——中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。
死记硬背——通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。
习题——通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(cuisenaire rods)来教授分数。