1. 138x72x38用简便方式计算
列式计算为
138×72×38
=9936×38
=377568
所以原式的计算结果为377568.
2. 72×98简便计算
72×98
=72×(100-2)
=72×100-72×2
=7200-144
=7056
解析:经过观察,此题可先进凑整,将98写成100-2的形式,然后用乘法分配律将100和2分别乘以72,乘到的积相减,这样就达到简便运算的目的。
凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
简便运算的注意事项:
在进行简便运算,应注意运算符号(乘除和加减)和大、中、小括号之间的关连。不要越级运算,以免发生运算错误。
简便运算的相关定律
1、乘法分配律
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。
2、乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。
3、乘法交换律
乘法交换律用于调换各个数的位置:a×b=b×a
4、除法的性质:一个数连续除以几个数(0除外)等于一个数除以这几个数的积。
字母表示:a÷b÷c=a÷(b×c)
6、商不变的规律
概念:被除数和除数同时乘上或除以相同的数(0除外)它们的商不变。
字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)
3. 72x38用格子乘法怎么算
500多年前,意大利的一本算术书中讲述了一种“格子乘法”,后来传入中国,在明朝的《算法统宗》中称为“铺地锦”。你能仿照下面的例子算出“357×46”的积吗? 46×75=3450357×46=分析与解:初看这道题,对“铺地锦”的计算方法不容易理解。如果我们用乘法竖式的算法同它比较一下,就可以发现它们之间的联系,从而找到“铺地锦”的计算方法。具体过程可以分成以下两步进行:一. 写出竖式二. 比较对照1. 比较因数和积的书写位置。一个因数46分别写在格子的上方,另一个因数75写在格子的右面。积3450,从低位起,依次写在格子的左边和下边。2. 比较部分积的写法。先看46乘以个位上的5,其中6与5的积30写在格子右下角的小格内,“0”写在斜线的下边,“3”写在斜线的上边;4与5的积20写在格子左下角的小格内,“0”写在斜线的下边,“2”写在斜线的上边。接着看46乘以十位上的7,其中6与7的积42、4与7的积28,分别写在格子的右上角和左上角。3. 比较部分积相加的方法。笔算乘法的结果,是由各个部分积相加得到的。那么“铺地锦”中的积3450是怎么得出的呢?从图中可以看出:3、4、5、0是由各条斜线格上的数相加得到的。从右下角开始,第一条斜线格上单独一个0;第二条斜线格上“2+3+0=5”;第三条斜线格上“4+8+2=14”,格子外写4,1进到下一斜线格中,与第4条斜线格上的2相加得3。4. 比较算理。四条斜线格相当于竖式中的个位、十位、百位、千位。每条斜线格上的数相加,相当于相同数位相加。例如,右下角第二条斜线格上“2+3+0”,即表示2个十加3个十,再加0个十,得5个十(50)。以上说明,“铺地锦”和笔算乘法的计算方法不同,但算理相同,结果相同。现在用的笔算乘法比“铺地锦”简便得多了 。 你能用“铺地锦”计算“357×46”吗?
4. 72x38+72x61+72用简便方法计算
72×38+72×61+72简便计算
解:原式=72×38+72×61+72×1
=72×(38+61+1)
=72×100
=7200
分析:
运用乘法结合律计算