Ⅰ 六年级简便运算的技巧和方法是什么
综述,六年级简便运算的技巧和方法有提取公因式、借来借去法、拆分法和乘法分配律结、利用基准数、利用公式法、裂项法等等。
一、提取公因式
这个方法实实际是运用子乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)
二、借来借去法
考试中有看到998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。还要注意还,有借有还,再借不难。
例如:9999+999+99+9=9999+1+999+1+99+1+9+1-4
三、拆分法和乘法分配律结
这种方法要灵活掌握拆分法和乘法分配律,看到99、101、9.8等接近一个整数的时候,首先考虑拆分。
例如:34×9.9=34×(10-0.1)
四、利用基准数
在一系列数中找出一个折中的数字来代表这一系列的数字,当然要记得这一数字的选择不能偏离这一系列数字太远。
例如:2072+2052+2062+2042+2083=(2062×5)+10-10-20+21
五、利用公式法
(1)加法交换律:两数相加交换加数的位置,和不变。
(2)加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
(3)乘法交换律:两数相乘,交换因数的位置,积不变。
(4)乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
(5)乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(6)除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
六、裂项法
分数裂项是指将分数版式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称这国裂项法。
如:1/[n(n+1)]=(1/n)-[1/(n+1)]
1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}
Ⅱ 小学奥数简便计算的讲解
一、乘法:
1.因数含有25和125的算式:闷困
例如①:25×42×4
我们牢记25×4=100,所以交换因数位置,使算式变为25×4×42.
同样含有因数125的算式要先用125×8=1000。
例如②:25×32
此时我们要根据25×4=100将32拆成4×8,原式变成25×4×8。
例如③:72×125
我们根据125×8=1000将72拆成8×9,原式变成8×125×9。
重点例题:125×32×25
=(125×8)×(4×25)
2.因数含有5或15、35、45等的算式:
例如蚂如念:35×16
我们根据需要将16拆分成2×8,这样原式变为35×2×8。因为这样就可以先得出整十的数,运算起来比较简便。
3.乘法分配率的应用:
例如:56×32+56×68
我们注意加号两边的算式中都含有56,意思是32个56加上68个56的和是多少,于是可以提出56将算式变成56×(32+68)
如果是56×132—56×32
一样提出56,算是变成56×(132-32)
注意:56×99+56
应想99个56加上1个56应为100个56,所以原式变为56×(99+1)
或者56×101-56
=56×(101-1)
另外注意综合运用,例如:
36×58+36×41+36
=36×(58+41+1)
橡滚47×65+47×36-47
=47×(65+36-1)
4.乘法分配率的另外一种应用:
例如:102×47
我们先将102拆分成100+2
算式变成(100+2)×47
然后注意将括号里的每一项都要与括号外的.47相乘,算式变为:
100×47+2×47
例如:99×69
我们将99变成100-1
算式变成(100-1)×69
然后将括号里的数分别乘上69,注意中间为减号,算式变成:
100×69-1×69
二、除法:
1.连续除以两个数等于除以这两个数的乘积:
例如:32000÷125÷8
我们可以将算式变为32000÷(125×8)=32000÷1000
2.例如:630÷18
我们可以将18拆分成9×2
这时原式变为630÷(9×2)
注意要加括号,然后打开括号,原式变成630÷9÷2=70÷2
三、乘除综合:
例如6300÷(63×5)
我们需要打开括号,此时要将括号里的乘号变为除号,原式变为
6300÷63÷5
Ⅲ 数学简便计算方法讲解
数学简便计算方法讲解参考如下:
简便运算是数学教学中一个不可或缺的内容,被视为思维训练的一种重要手段,是培养数感的主要途径之一。
例题:数学简便运算技巧。
1、运用加法的交换律、结合律进行计算。
如:5.7+3.1+0.9+1.3,等。
2、运用乘法的交换律、结合律进行简算。
如:2.5×0.125×8×4等,如果遇到除法同样适用,或将除法变为乘法来计算。如:8.3×67-8.3÷6.7等。
3、运用乘法分配律进行简算,遇到除以一个数,先化为乘以一个数的倒数,再分配。
如:2.5×(100+0.4),还应注意,有些题目是运用分配律的逆运算来简算:即提取公因数。如:0.93×67+33×0.93。
4、运用减法的性质进行简算。减法的性质用字母公式表示:ABC=A(B+C),同时注意逆进行。如:7691(691+250)。
5、运用除法的性质进行简算。除法的性质用字母公式表示如下:A+B=C=A+(BxC),同时注意逆进行,如:736:25÷4。
6、接近整百的数的运算。这种题型需要拆数、转化等技巧配合。
如;302+76=300+76+2,298188=3001882,等。
7、认真观察某项为0或1的运算。
如:7.93+2.07×(4.54.5)等。
数学简便运算方法
提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
Ⅳ 小学简便计算的窍门
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
Ⅳ 小学数学简便运算(转)
一、简算方法
1、运算定律
加法:
加法交换律a+b=b+a
加法结合律(a+b)+c=a+(b+c)
乘法:
乘法交换律a×b=b×a
乘法结合律(a×b)×c=a×(b×c)
乘法分配律(a+b)×c=a×c+b×c
减法:
减法的性质a-b-c=a-(b+c)
除法:
除法的性质a÷b÷c=a÷(b×c)
2、添(去)括号
括号前是+、×,不变号;括号前是-、÷,要变号。
变号规则:+变-,-变+;×变÷,÷变×。
3、移位置
带号搬家:移位置时要连同数字前面的符号一起移动。
二、解题技巧
有些同学,你考他运算定律,他倒背如流,但一遇到具体题目,就好像老虎咬刺猬,不知从何下手。归根结底,还是对各种简算方法理解不到位,不清楚具体的运用场景。
接下来就具体讲一下在什么情况下运用何种简算方法。
首先,需要知道两个概念:同级运算、两级运算。
加、减法是第一级运算,乘、除法是第二级运算。一个算式,如果只含有加、减法或只含有乘、除法,我们就说这个算式是同级运算;一个算式,如果既含有加、减法又含有乘、除法(通常是有乘有加或有乘有减),我们就说这个算式是两级运算。
Ⅰ、两级运算
只能运用乘法分配律!
例1、25×(4+8)
=25×4+25×8
=100+200
=300
有括号,分别相乘,再相加。
例2、17×23-23×7
=23×(17-7)
=23×10
=230
无括号,找相同数。
相同数提出来,剩下的写括号里,中间是+就写+,中间是-就写-。
例3、99×38+38
=38×99+38×1
=38×(99+1)
=38×100
=3800
例4、88×201-88
=88×201-88×1
=88×(201-1)
=88×200
=17600
是两级运算,但不是标准形式的,可通过适当的变形转化成标准形式。熟练之后第一步可省略。
Ⅱ、同级运算
1、只含有加法
综合利用加法交换律和结合律,把能凑整的凑一块,用括号括起来。
例5、5+137+45+63+50
=(5+45+50)+(137+63)
=100+200
=300
2、只含有乘法
综合利用乘法交换律和结合律,把能凑整的凑一块,用括号括起来。
例6、8×25×125×4
=(125×8)×(25×4)
=1000×100
=100000
3、连减
减法的性质
例7、347-148-52
=347-(148+52)
=347-200
=147
4、连除
除法的性质
例8、16000÷125÷8
=16000÷(125×8)
=16000÷1000
=16
5、有括号
去括号
例9、740÷(37×4)
=740÷37÷4
=20÷4
=5
注意要变号。
6、尾数相同
移位置
例10、445+87-45
=445-45+87
=400+87
=487
Ⅲ、两数相乘,要拆项
两数相乘直接适用的只有乘法交换律,并不能使计算简便,所以需要通过拆项变成同级运算或两级运算。
1、有一个数接近整百(整十、整千类似)
将接近整百的数拆成“整百+几”或“整百-几”。
例11、87×99
=87×(100-1)
=87×100-87×1
=8700-87
=8613
例12、103×12
=(100+3)×12
=100×12+3×12
=1200+36
=1236
2、有一个数是25或125
遇25拆4,遇125拆8
例13、25×28
=25×(4×7)
=25×4×7
=100×7
=700
例14、125×72
=125×(8×9)
=125×8×9
=1000×9
=9000
也可以拆成两级运算
125×72
=125×(80-8)
=125×80-125×8
=10000-1000
=9000
三、易错解析
1、乘法分配律只乘了第一个数
例15、125×(80+8)
错解:
125×(80+8)
=125×80+8
=10000+8
=10008
正解:
125×(80+8)
=125×80+125×8
=10000+1000
=11000
2、同级运算变两级运算
例16、25×32
错解:
25×32
=25×(4×8)
=25×4+25×8
=100+200
=300
正解:
25×32
=25×(4×8)
=25×4×8
=100×8
=800
3、移位置,忘带号搬家
例17、253-87+53
错解:
253-87+53
=253-53+87
=200+87
=287
正解:按运算顺序计算即可。
4、添(去)括号,-、÷忘变号
例18、3700÷25×4
错解:
3700÷25×4
=3700÷(25×4)
=3700÷100
=37
正解:按运算顺序计算即可。
5、拆项时出错
例19、37×99
错解:
37×99
=37×(99+1)
=37×100
=3700
正解:
37×99
=37×(100-1)
=37×100-37×1
=3700-37
=3663
四、拓展提高
两级运算,无括号,无相同数。
例20、46×32+27×64
=46×32+54×32
=32×(46+54)
=32×100
=3200
找倍数,利用积的变化规律转化成乘法分配律标准形式。
Ⅵ 四年级简便运算的技巧和方法是什么
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,可以“带符号搬家”。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括号法
在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
方法三:乘法分配律法
分配法:括号里是加或减运算,与另一个数相乘,注意分配;提取公因式:注意相同因数的提取;注意构造,让算式满足乘法分配律的条件。
方法四:拆分法
拆分法属于为了方便计算把一个数拆成几个数,这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小。
方法五:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
Ⅶ 小学数学简便运算的技巧和方法
小学数学的简便运算无外乎是几种,比如说凑整法
比如说各种结合律交换律等等