是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。
在进行简便运算(四则运算)时,应注意运算符号(乘除和加减)和大、中、小括号之间的关连。不要越级运算,以免发生运算错误。
(1)简便计算的方法概念扩展阅读:
定律
1、乘法分配律
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。
也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。如将上式中的+变为x,运用乘法结合律也可简便计算
2、乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;
或先把后两个数相乘,再和第一个数相乘,积不变。它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
⑵ 什么是简便计算方法
简便计算就是通过结合、消减、拆分、分配凑数和乘除的方法使算式的运算过程变得相对简单明了的运算方法。
⑶ 如何进行简便运算
简便运算,就是利用运算定律或者是运算性质,巧用特殊数之间的特性进行巧算
乘法分配律为:两个数的和与一个数相乘,先将它们与这个数分别相乘,再相加,积不变.即:(a+b)×c=a×c+b×c.反过来则:a×c+b×c=(a+b)×c
简便计算常用方法:
1、利用运算定律。利用加法的交换律和结合律,乘法的交换律、结合律和分配律,可以使计算简便。
2、分解因数。有的特殊数相乘是可以得到整数的,比如25和4,125和8等等,在我们遇到这些数字时,可以想办法把它们变成能得到整数的数字。
3、数字变形。有的列式中的数字不能用简便方式,但是我们把一些数字变形后就可以采用简便方式,这时我们就要给数字变形了。
4、等差数列。有些算式的相邻数字的差是相同的,这时我们可以采用等差数列公式算式。
5、设数法。有些算式中,有的数字是相同的,但是式子又比较长,这时我们可以把相同的数字组成的算式设为一个字母,然后把式子中相应的换成字母,再计算,就简便多了。
6、凑整法。有些小数与整数相差很少,又有规律,这是我们可以凑成整数计算。
7、拆分法。拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
⑷ 简便方法计算的方法 简便方法计算有哪些
1、简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc;cx(a-b)=axc-bxc。
2、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
3、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
4、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小。
5、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
⑸ 数学简便计算,有哪几种方法
一、整体简便计算。整个一道算式可以用简便方法计算,这种形式最为常见。例如:
=1.14×10
=11.4
二、局部简便计算。一道算式中局部可以进行简便计算,这种形式也不少见。
三、中途简便计算。开始计算并不能简便计算,而经过一两步后却能进行简便计算,这种情况最容易忽视。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重复简便计算。在一道题里不止一次地进行简便计算,这种情况往往不注意后一次简便计算。例如:
=8×55×0.125
=8×0.125×55 第二次
=1×55
=55
一简算的根据 a、乘法运算定律 b、加法运算定律 c、减法、除法的运算性质
二简算的类型 a、直接简算 b、部分简算 c、转化简算 d、过程简算
三简算的几种公式:
加法:a+b+c=a+(b+c)(加法结合律)
乘法:a×b×c=a×c×b(乘法交换律) a×b×c=a×(b×c)(乘法结合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
减法:a-b-c=a-c-b(减法交换律) a-b-c=a-(b+c)(减法结合律)
除法:a÷b÷c=a÷c÷b(除法交换律) a÷b÷c=a÷(b×c)(除法结合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除数是两个数的差或和的情况下才能进行分配
希望帮到你 望采纳 谢谢 加油
⑹ 什么是简便计算方法四年级
简便计算就是利用加法结合律,加法交换律以及乘法交换律,结合律,分配率以及减法的运算法则,除法的运算法则把复杂的运算进行简化。尽量凑整十整百,或者能整除。
比如:128+35+72+65
=(128+78)+(35+65)
=200+100
=300
或者42800÷4÷25
=42800÷(4×25)
=42800÷100
=428
⑺ 简便运算的规律和方法
一、什么是简便运算
“简便运算”是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算。
二、简便运算大全
(一)、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
说明:适用于加法交换律和乘法交换律。
(二)、结合律
(1)加括号法
①当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括号法
①当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
②当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就 要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
①分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
③注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借来还去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆还要注意不要改变数的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000
125×88=125×(8×11)=125×8 ×11=1000×8=8000
36×25=9×4×25=9×(4×25)=9×100=900
综上所述,在四则混合运算中,简便运算试题的类型不外乎这几种形式,只要掌握四则混合运算顺序,同时掌握好上述简便算法,就可以保证计算的时效。
⑻ 什么是简便运算
在数的运算中,有加(+)、减(-)、乘(×)、除(÷)四种运算,我们在数学上又为了能更简便计算它们,简称称作简算,简算有以下几种(公式详见在常用特殊数的乘积、及简算公式) :
加法:(加法交换律) (加法结合律)(近似数)
乘法:(乘法交换律)(乘法结合律)(乘法分配律)(乘法分配律变化式(四个))
减法:(减法的基本性质)(近似数)
除法:(除法的基本性质)(商不变的性质)
(8)简便计算的方法概念扩展阅读
1、乘法交换律:
乘法交换律的概念为:两个因数交换位置,积不变。
字母公式:a×b=b×a
题例(简算过程):12×8
=8×12
=96
2、乘法结合律:
乘法结合律的概念为:先乘前两个数,或先乘后两个数,积不变。
字母公式:a×b×c=a×(b×c)
题例:30×25×4
=30×(25×4)
=30 ×100
=3000
⑼ 简便算法是什么
简便算法...顾名思义就是:使算法 变得简单。
举个例子:
25×24=?就可以用简便算法 即:25×24=25×(4×6)=25×4×6=100×6=600
这样的算法就是 简便算法了 。
相关内容:
1、算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
2、如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
3、算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。
4、随机化算法在内的一些算法,包含了一些随机输入。形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。
5、这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。
6、即使在当前,依然常有知觉想法难以定义为形式化算法的情况。