72*32+14*64
=36*2*32+14*64
=36*64+14*64
=64*(36+14)
=64*50
=3200
㈡ 简便计算方法
方 法
接根据运算定义和性质,把算式中能凑成整十、整百、整千……的数先算,使计算简便。
26+47+74=(26+74)+47=100+47=147,
25×89×4=25×4×89=100×89=8900
对接近整百、整千的数,可以不上一个数,使它成为整百、整千的数,使运算简便。
2837-398=2837-(400-2)=2837-400+2=2437+2=2439
把已知数适当分解,然后应用运算性质,使计算简便。
192 ÷16=192÷(4×4)=192÷4÷4=48÷4=12
3762÷18=3762÷(2×9)=3762÷2÷9=
1881÷9=209
一个数乘以(或除以)5、25、125,可以转化为10÷2、100÷4、1000÷8来代替,从而使计算简便。
488×125=488×(1000 ÷8)=488÷8×1000=61×1000=61000
求一些大小不等而又比较接近的几个数的和,可以从中选定一个数作为基准数,然后把各个数与基准数的差积累起来,再加上基准数与项数之积。
46+36+42+45+38+43+38=(40+6)+(40-4)+(40+2)+(40+5)+(40-2)+(40+3)+(40-2)=40×7+(6-4+2+5-2+3-2)=280+8=288
求几个积(或商)的和(或差),如果每个积(或商)中有一个因数(或除数)相同,可反用乘法分配律来简便计算。
13×9+8×9=(13+8)×9=21×9=189
33÷6-9÷6=(33—9)÷6=24÷6=4
根据差和商的不变性,把被减数和减数同时增加或减小同一个数,或把被除数和除数同时扩大或缩小相同的倍数,进行简便计算。
462—87=(462+13)—(87+13)=475-100=375
425÷25=(425×4)÷(25×4)=1700÷100=17
㈢ 简便运算的技巧是什么
简便运算方法大全
一、什么是简便运算
“简便运算”是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算。
二、简便运算大全
(一)、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
说明:适用于加法交换律和乘法交换律。
1/4
(二)、结合律
(1)加括号法
①当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要
2/4
变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括号法
①当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
②当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
①分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500这里35是相同因数。
③注意构造,让算式满足乘法分配律的条件。
3