A. 加减乘除简便运算法则定律
在数学中,有关加减乘除简算法则定律的计算方法及技巧如下,可以参考一下:
加法交换律:a+b+c=a+c+b。
加法结合律:a+b+c=a+(b+c)。
减法交换侓:a-b-c=a-c-b
减法结合侓:a-b-c=a-(b+c)。
乘法交换律:a×b=b×a。
乘法结合律(a×b)×c=a×(b×c)。
乘法分配律:(a+b)×c=a×c+b×c。
加减乘除运算法则定律
乘法分配律
两个数的和(差)同一个数相乘,可以先把两个加数(减数)分别同这个数相乘,再把两个积相加(减),积不变。
字母表达是:a×(b+c)=a×b+a×c
【a×(b-c)=a×b-a×c】
或:a×b+a×c=a×(b+c)
【a×b-a×c=a×(b-c)】
加减计算法则
1.整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。
2.小数加、减法的计算法则:
1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),
2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。)
3.分数加、减计算法则:
1)分母相同时,只把分子相加、减,分母不变;
2)分母不相同时,要先通分成同分母分数再相加、减。
B. 加减乘除法速算技巧
加减乘除法速算技巧的操作,这个可以根据一定的运算定律来进行计算的,因为运用到比较简便的运算定律,可以快速并且直接地计算出结果
C. 加减乘除的简便运算方法
加减乘除的简便计算方法:
复习重点:
1、小数加、减的计算方法及应用加法运算律进行简便计算。
2、小数乘(除)以整数的计算方法、小数点位置移动引起小数大小变化的规律
3、小数乘(除)以小数的计算方法、求积(商)的近似值、应用乘法运算律进行简便计算。
复习难点:
1、应用加法运算律进行简便计算。
2、
小数点位置移动引起小数大小变化的规律。
3、
求积(商)的近似值和应用乘法运算律进行简便计算
教学过程:
一:知识梳理:
小数四则混合运算和简便计算。
(1)小数加减法要相同数位上的数对齐。小数乘法末尾对齐。
(2)小数乘法:先按整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。积的末尾有0要化简。
(3)小数除以整数:除到哪一位,商就写在哪一位上,商的小数点和被除数的小数点对齐,商的整数部分不够商1,个位上就写0,如果除到被除数的末尾还有余数,添0再继续除。小数除以小数,先把除数变成整数,除数的小数点右移几位,被除数的小数点也向右移动相同的位数,再按除数是整数的小数除法计算。
(4)循环小数、近似数(四舍五入法,进一法,去尾法)。
(5)简便计算:运算律的运用和一些特殊的运算方法,(去括号的时候如果括号前面是减号和除号要注意变符号,例如:
a÷(b×c)=a÷b÷c,a-b-c=a-(b+c),a-(b-c)=a-b+c)
D. 加减乘除的计算方法
先乘除,后加减,有括号的先算括号里的.
整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。
2、小数加、减法的计算法则:
1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),
2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。)
3、分数加、减计算法则:
1)分母相同时,只把分子相加、减,分母不变;
2)分母不相同时,要先通分成同分母分数再相加、减。
4、整数乘法法则:
1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;
2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。)
5、小数乘法法则:
1)按整数乘法的法则算出积;
2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。
3)得数的小数部分末尾有0,一般要把0去掉。
6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。
7、整数的除法法则
1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;
2)除到被除数的哪一位,就在那一位上面写上商;
3)每次除后余下的数必须比除数小。
8、除数是整数的小数除法法则:
1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;
2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
9、除数是小数的小数除法法则:
1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;
2)然后按照除数是整数的小数除法来除
10、分数的除法法则:
1)用被除数的分子与除数的分母相乘作为分子;
2)用被除数的分母与除数的分子相乘作为分母
E. 连除的简便算法和连减的简便算法有相似的地方吗
连除的简便算法和连减的简便算法有相似的地方。
相似的地方是一个数连续减去几个数,等于这个数减去这几个数的和。一个数连续除以几个数,等于这个数除以这几个数的积。
除此之外,使用括号后,里面的符号都要变化的。
例如:
3÷4÷5=3÷(4×5)
3-4-5=3-(4+5)
用字母表示就是a÷b÷c=a÷(bⅩc)连减的简便算法是一个数连续减去两个数就等于用这个数减去这两个数的和,用字母表示就是a—b—c=a—(b+c)。
除法的运算性质:
1. 被除数扩大(缩小)n倍,除数不变,商也相应的扩大(缩小)n倍。
2. 除数扩大(缩小)n倍,被除数不变,商相应的缩小(扩大)n倍。
3. 除法的性质:被除数连续除以两个除数,等于除以这两个除数之积。有时可以根据除法的性质来进行简便运算。
例如:300÷25÷4=300÷(25×4)=300÷100=3。
F. 连除连减的简便运算
连除和连减的简便运算可以利用,除法的性质和减法的性质,连续除以两个数,就等于除以这两个数的积。连续减去两个数,就等于减去这两个数的和。
G. 运算律用简便方法技巧
一、加法:
378+527+23(加法结合律的正运算,让后两个数相加凑成整百数)
576+(24+187)(加法运算率的逆运算,让前两个数相加凑成整百数)
167+289+33(加法交换律,让后两个数交换后再运用结合律与第一个数相加凑成整百数)
567+(187+24)(先去括号,再交换,最后结合)
58+392+42+61(先交换,再结合)
546+201(先把201分成200+1的和,再利用加法结合律)
546+199(先把199分成200-1的差,再去括号)
二、减法
559-145-255(减法的性质,减去两个数的和)
487-(187+126) (减法性质的逆运算,连续减去这两个数,487和187尾数相同,先减去187)
442-103-142(442和142尾数相同,要先减去142,所以两个减数交换位置)
8755-(2187+755)先用减法性质的逆运算,再交换。
546-201先把201拆分成(200+1),再用546-(200+1),利用减法的性质等于546-200-1。
546-199先把199拆分成(200-1),再用546-(200-1),利用括号前面是减号去掉括号要变号,就等于546-200+1。
综合:
487-(187-126)利用括号前面是减号去掉括号要变号的规律,等于487-187+126。
487+126-187利用交换律,后两数交换,交换时要带着符号搬家。
547+358+342-347先交换再结合,交换时要带着符号搬家两两组合。
85-17+15-33先交换再结合,交换时要带着符号搬家两两组合。
三、乘法
457×2×5利用乘法结合律的正运算,让后两个数相乘凑成整百数。
125×(80×7)利用乘法结合律的逆运算,让前两个数相乘凑成整百数。
125×7×80利用乘法交换律,先交换再125和80相乘凑成整千数。
125×(30×8)利用乘法结合律的逆运算去掉括号,再利用交换律让125和8相乘凑成整千数。
125×(80+8)利用乘法分配律,让125分别与80和8相乘再相加。
125×(80-8)利用乘法分配律,让125分别与80和8相乘再相减。
38×62+38×38利用乘法分配律的逆运算,先把共同的因数38提取出来,再把剩下的62和38相加。
65×99+65先把65写成65×1,再利用乘法分配律的逆运算,把共同的因数65提取出来,再把剩下的99和1相加。
65×101-65先把65写成65×1,再利用乘法分配律的逆运算,把共同的因数65提取出来,再把剩下的101和1相减。
38×101先把101拆分成(100+1),再利用乘法分配律,让38分别与100和1相乘再相加。
38×99先把99拆分成(100-1),再利用乘法分配律,让38分别与100和1相乘再相减。
125×32×25先把32拆分成(4×8),再利用乘法结合律,让125与8相乘25和4相乘,再把两积相乘。
125×88先把88拆分成(80+8),再利用乘法分配律,让125分别与80和8相乘再相加。
还可以先把88拆分成(11×8),再利用乘法结合律,让125与8相乘,再把积与11相乘。
综合:
79×25+22×25-25利用乘法分配律的逆运算,先把共同的因数25提取出来,再把剩下的79、22和25相加减。
67×21+18×21+15×21 利用乘法分配律的逆运算,先把共同的因数21提取出来,再把剩下的67、18和15相加。
125×15×8×4利用乘法结合律,让125与8相乘15和4相乘,再把两积相乘。
四、除法
3500÷25÷4利用除法的性质,除以两个数的积。
3500÷(35×25)利用除法性质的逆运算,除以两个数的积等于连续除以这两个数。
3500÷(25×35)先利用除法性质的逆运算,连续除以这两个数,再把两个除数交换。
800÷16先把16拆分成(8×2),再利用除法的性质,除以两个数的积等于连续除以这两个数。
3500÷25÷35把两个除数交换位置再除。
综合:
150×24÷50把后两数交换,交换时要带着符号搬家。