1. 小学数学简便计算公式
总结了小学数学的计算公式,及其灵活运用,简便计算技巧。
①加法
加法交换律:a+b=b+a;
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
②减法
a-b=-(b-a)
a-b-c=a-(b+c)
减法有一个口诀:加括号,变符号。
③乘法
乘法交换律:a x b=b x a;
乘法结合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小学数学试题中常考的一种题型-计算复杂数式。
经常就会用到乘法分配律,来提取公因数,简化计算。
【例1】计算:7.19x1.36+3.13x2.81+1.77x7.19
分析:这道题就是加法结合律,乘法交换律,乘法分配律的综合运用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等于0);
a x b÷c=a÷cxb(c不等于0);
以上公式是解四则运算题目的基本关系式。
灵活学习,灵活运用。
它们除了正着用,有时候还得会倒着用。
【例2】计算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想办法把凑出一个3.4,然后让3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已经凑出来了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也凑出来了)
=47.9x(6.6+3.4)+17
=496
注意:例2题目中我们将乘法分配律倒着使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外还用到了一个特别的公式。
529x0.34=529÷10x10x0.34
这个公式总结出来,即:
a x b=a÷c x c x b(c不等于0)。
2. 五年级简便计算有哪些
五年级的简便计算有:凑整法、交置法、去括号法、运用运算定律、减法性质。注意,对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
小学数学简便运算归类练习
一般情况下,四则运算的计算顺序是:有括号时,先算括号里面的;没有括号时,先算二级运算,再算- -级运算,只有同一级运算时,从左往右依次计算。
一、简便运算一般有5种方法:
1.凑整法:通过加、减一个数将其凑成整十、整百、整千的数。
2.交置法:也就是通常所说的结合律,几个数相加、相减,将其位置交换一下,凑成整十、整百、整千的数。
3.去括号法:有时在计算含有括号的算式时,通过去除括号,可使运算简便,但要注意的是去括号后的符号变化。
4、运用运算定律。
加法交换律: a+b=b+a;
加法结合律::a+b+c=a+ (b+c);
乘法交换律:aXb=bXa;
乘法结合律:aXbXc=aX (bXc);
乘法分配律:(a+b) Xc=aXc+bXc。
5、 减法性质:a-b-c=a-c-b=a- (b+c);
除法性质:a+b十c=a+c十b=a+ (bXc)。
运算简便,但要注意的是去括号后的符号变化。
3. 小学数学简便运算方法归类
简算是一种简便、迅速的运算,根据算式的不同特点,利用数的组成和分解、各种运算定律、性质或它们之间的特殊关系,使计算过程简单化,或直接得出结果。根据归纳,常见以下几类题型:
(一)“凑整巧算”——运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。
【评注】凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。
1、加法交换律
定义:两个数交换位置和不变,
公式:A+B =B+A,
例如:6+18+4=6+4+18
2、加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
3、引申——凑整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,譬如此题,“1.999”刚好 与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。但是,一定要记住刚 才“多加的”要“减掉”。“多减的”要“加上”!
(二)运用乘法的交换律、结合律进行简算。
1、乘法交换律
定义:两个因数交换位置,积不变.
公式:A×B=B×A
例如:125×12×8=125×8×12
2、乘法结合律
定义:先乘前两个因数,或者先乘后两个因数,积不变。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)
(三)运用减法的性质进行简算,同时注意逆进行。
1、减法
定义:一个数连续减去两个数,可以先把后两个数相加,再相减。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】
例如:20-8-2=20-(8+2)
(四)运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
1、除法
定义:一个数连续除去两个数 ,可以先把后两个数相乘,再相除。
公式:A÷B÷C=A÷(B×C),
例如:20÷8÷1.25=20÷(8×1.25)
定义:除数除以被除数,把被除数拆为两个数字连除(这两个数的积一定是这个被除数)
例如:64 ÷16=64÷8÷2=8÷2=4
(五)运用乘法分配律进行简算
乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
4. 所有的数学分数简便方法(小学的)
分数简便方法就是5大运算定律和2个性质:
加法交换律A+B=B+A:1/6+4/7+5/6
加法结合律(A+B)+C=A+(B+C):1/6+4/7+5/6+3/7
减法的性质A-B-C=A-(B+C):10-1/6-5/6
乘法交换律A×B=B×A:3/5×8/9×5/3
乘法结合律A×B×C=A×(B×C):3/5×8/9×5/3×9/8
乘法分配律A×(B+C)=A×B+A×C:12×(1/3+3/4)
除法的性质A÷B÷C=A÷(B×C):8/11÷3/5÷5/3
虽然还有很多变式,但都是在以上题目的基础上变化而来的。
(用公式编辑器录入的分数贴上不上)
解析:列项相消法是小学中常常涉及对简便运算法则
公式是 1/n(n+1) =1/n -1/(n+1) 例1/12=1/3 -1/4
我给个例题:1-1/2 +1/12 +1/20 +1/30 +1/42 +1/56=?
解答:∵1/12 =1/3-1/4 ,1/20=1/4-1/5 ,1/30= 1/5- 1/6 , 1/42=1/6-1/7 ,1/56=1/7-1/8
∴原式=1-1/2 +1/3-1/4 +1/4-1/5 +1/5- 1/6+1/6-1/7+1/7-1/8 =1-1/2 +1/3 -1/8=5/6-1/8=17/24
其他的有乘法交换律:a×b=b×a 这些基本比较简单 不做拓展了~
注意:因为你还是小学生 所以这里做下说明 1/n 代表n分之一 ∵是因为的意思 ∴是所以的意思。
13.72×0.25+6.28÷4
=13.72×0.25+6.28×0.25
=(13.72+6.28)×0.25
=20×0.25
=5
一个数乘0.25等于这个数除以4
注:设宽为a分米,长为3a分米
(a+3a)×2=25.6
8a=25.6
a=3.2
宽为3.2分米,长为9.6分米
长方形面积
9.6×3.2=30.72平方分米
小学的数学题简便方法35—9怎么做
35—9
=35-10+1
=25+1
=26
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数洞袭胡=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周纳拦长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1=
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
约分
240÷40+240÷60
=6+4
=10
长度单位间进率:
1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
面积单位间进率:
1平方千米=1公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
时间单位间的进率:
1年=12个月
平年1年=365天
闰年1年=366天
1个大月=31天
1个小月=30天
平年2月=28天
闰年2月=29天
1天=24小时
1小时=60分
1分=60秒
质量单位间的进率:
1吨=1000千克
1千克=1000克
1:2948+4769
=3000-52+4800-31
=3000+4800-52-31
=7800-83
=7700+100-83
=7700+17
=7717
2:980-495
=980-500+5
=480+5
=485
3:630除以14
=7*90/2*7
=90/2
=45
4:2700除以45再除以2
=2700/(45*2)
=2700/90
=30*90/90
=30
分数化小数分子除以分母,小数化分数看它小数点后有一位分成10分之几,是二位看成百分之几!
5. 小学的简便运算公式有哪些
1、 乘法运算
每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、倍数计算
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数= 1倍数
3、 路程计算
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、 价格计算
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、效率计算
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、加法计算
加数+加数=和
和-一个加数=另一个加数
7、 减法计算
被减数-减数=差
被减数-差=减数
差+减数=被减数
8、乘法问题
因数×因数=积
积÷一个因数=另一个因数
6. 小学五年级简便运算是怎么样的
1、25+89+75
=25+75+89
=100+89
=189
2、25×177×4 125×(80+8)
=25×4×177 =125×80+125×8
=100×177 =10000+1000
=17700 =11000
3、1/1x2-1/2x3-1/3x4-1/4x5-1/5x6-1/6x7-1/7x8
=1-1/2-(1/2-1/3)-(1/3-1/4)-(1/4-1/5)-(1/5-1/6)-(1/6-1/7)-(1/7-1/8)
=1-1/2-1/2+1/3-1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8
=1/8
简便计算定律:
1、乘法交换律乘法交换律用于调换各个数的位置:a×b=b×a4、减法的性质:一个数连续减去几个数等于一个数减去这几个数的和。
字母表示:a-b-b= a-(b+c)。
2、除法的性质:一个数连续除以几个数(0除外)等于一个数除以这几个数的积。
字母表示:a÷b÷c= a÷(b×c)。
3、商不变的规律概念:被除数和除数同时乘上或除以相同的数(0除外)它们的商不变。
字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)。
7. 1-6年级数学所有简便算法公式 (描述须清楚易懂)我会给你财富.
1到6年级数学公式
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数.
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或 和-一倍数=另一数.
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或 较小数+差=较大数.
【平均数问题公式】
总数量÷总份数=平均数.
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间.
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种.这两种题,都可用下面的公式
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;念激
相遇(离)路程÷相遇(离)时间=速度和.
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程.
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和.
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速.
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度.
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目).
【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时.
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间.
1 .每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2. 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3. 速度×时间=路程
路程÷速度败高圆=时间
路程÷时间=速度
4. 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5. 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1. 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2. 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3. 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 .长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 .三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6. 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7. 梯形
s面积 a上底 b下察塌底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9. 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10. 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
和差问题的公式;
总数÷总份数=平均数
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题 :
1. 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题 :
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题 :
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题 :
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题 :
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题 :
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
这些应该可以了吧?
8. 小学数学简便计算公式大全
总结了小学数学的计算公式,及其灵活运用,简便计算技巧。
①加法
加法交换律:a+b=b+a;
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
②减法
a-b=-(b-a)
a-b-c=a-(b+c)
减法有一个口诀:加括号,变符号。
③乘法
乘法交换律:a x b=b x a;
乘法结合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小学数学试题中常考的一种题型-计算复杂数式。
经常就会用到乘法分配律,来提取公因数,简化计算。
【例1】计算:7.19x1.36+3.13x2.81+1.77x7.19
分析:这道题就是加法结合律,乘法交换律,乘法分配律的综合运用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等于0);
a x b÷c=a÷cxb(c不等于0);
以上公式是解四则运算题目的基本关系式。
灵活学习,灵活运用。
它们除了正着用,有时候还得会倒着用。
【例2】计算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想办法把凑出一个3.4,然后让3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已经凑出来了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也凑出来了)
=47.9x(6.6+3.4)+17
=496
注意:例2题目中我们将乘法分配律倒着使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外还用到了一个特别的公式。
529x0.34=529÷10x10x0.34
这个公式总结出来,即:
a x b=a÷c x c x b(c不等于0)。