导航:首页 > 知识科普 > 数学方程用的方法怎么求

数学方程用的方法怎么求

发布时间:2023-05-24 08:25:21

① 解方程有几种方法

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接开平方法;2、配方法;3、公式法;4、因式分解法。 1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2;=n (n≥0)的 方程,其解为x=±√n+m . 例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2;,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解符号) ∴x= ﹙﹣1±√7﹚/3 ∴原方程的解为x?=﹙√7﹣1﹚/3,x?=﹙﹣√7-1﹚/3 (2)解: 9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x=﹙ 4±√11﹚/3 ∴原方程的解为x?=﹙4﹢√11﹚/3,x?= ﹙4﹣√11﹚/3 2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax^2+bx=-c 将二次项系数化为1:x^2+b/ax=- c/a 方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2; 方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚² 当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚² ∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式) 例2.用配方法解方程 3x²-4x-2=0 解:将常数项移到方程右边 3x²-4x=2 将二次项系数化为1:x²-﹙4/3﹚x= ? 方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=? +(4/6 )² 配方:(x-4/6)²= ? +(4/6 )² 直接开平方得:x-4/6=± √[? +(4/6 )² ] ∴x= 4/6± √[? +(4/6 )² ] ∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ . 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x²-8x=-5 解:将方程化为一般形式:2x²-8x+5=0 ∴a=2, b=-8, c=5 b²-4ac=(-8)²-4×2×5=64-40=24>0 ∴x=[(-b±√(b²-4ac)]/(2a) ∴原方程的解为x?=,x?= . 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x²+3x=0 (3) 6x²+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)

② 解方程有几种方法如何才能轻松求解

在上小学的时候,很多学生都会接触到加法、乘法、除法和减法,在上小学高年级的时候,比如说五六年级就有可能接触到方程。对于小学生来说方程是比较难的,但是如果你掌握到解方程的技巧,也能够轻松的把方程解出来。那你知道解方程有几种方法吗?如何才能够轻松求解呢?

总结

所以虽然方程比较难,但是如果你掌握了正确的方法,就能够用不同的方法将这个方程解出来。在学习数学的时候,不要想着一口吃成胖子,应该一步一步的学习,将基础打好之后才能够把比较难的题解出来。

③ 数学解方程有什么方法

数学解方程的方法:

1、去分母,这是解一元一次方程的首要步骤,有分母的一元一次方程首先要去分母,当然如果方程中没有分母,省去此步骤。

2、去括号,去除分母之后,就该完成括号的去除了,如果有分母,先去分母再去除括号,没有括号的话可以省去此步骤。

3、移项,每个一元一次方程都会有的一步,就是把同类项的数据移动到同一边,把未知数移动到等号的左边。

4、直接根据四则运算中已知数与得数之间的关系,求未知数的值。

5、把含有未知数x的项看成是一个数,逐步求出未知数的值。

6、通过计算,先把原方程化简,再逐步求出方程的解。

④ 方程的计算方法

1、有分母先去分母。

2、有括号就去括号。

3、需要移项就进行移项。

4、合并同类项。

5、系数化为1求得未知数的值。

6、开头要写“解”。

例如:

3+x=18

解:x=18-3

x=15

使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。

(4)数学方程用的方法怎么求扩展阅读:

一、解方程方法

1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。

2、应用等式的性质进行解方程。

3、合并同类项:使方程变形为单项式。

4、移项:将含未知数的项移到左边,常数项移到右边。

例如:3+x=18

解:x=18-3

x=15

5、去括号:运用去括号法则,将方程中的括号去掉。

4x+2(79-x)=192

解: 4x+158-2x=192

4x-2x+158=192

2x+158=192

2x=192-158

x=17

6、公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。

二、相关概念

1、含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。

2、使等式成立的未知数的值,称为方程的解,或方程的根。

3、解方程就是求出方程中所有未知数的值的过程。

4、方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。

5、验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。

6、注意事项:写“解”字,等号对齐,检验。

⑤ 数学解方程有几种方法

1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。

2、应用等式的性质进行解方程。

3、合并同类项:使方程变形为单项式

4、移项:将含未知数的项移到左边,常数项移到右边

例如:3+x=18

解:x=18-3

x=15

5、去括号:运用去括号法则,将方程中的括号去掉。

4x+2(79-x)=192

解: 4x+158-2x=192

4x-2x+158=192

2x+158=192

2x=192-158

x=17

6、公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。

7、函数图像法:利用方程的解为两个以上关联函数图像的交点的几何意义求解。

(5)数学方程用的方法怎么求扩展阅读

解方程依据

1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;

2、等式的基本性质

性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。

(1)a+c=b+c

(2)a-c=b-c

性质2:等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:

a×c=b×c 或a/c=b/c

性质3:若a=b,则b=a(等式的对称性)。

性质4:若a=b,b=c则a=c(等式的传递性)。

⑥ 解方程的公式法

解方程的公式法需要背过公式。

解方程的其他方法:

1、因式分解法:把一元二次方程化为一般式后,如果方程左边的多猜扮渣项式可以因式分解的话,可以使用此方法求解。

解法步骤缺颂:①把方程的左边因式分解,转化为两个因式乘积的形式;

②令每个因式分别等于0,进而求出方程的两个根。

2、直接开方法:把一元二次方程化为一般式后,如果方程中缺少一次项,是一个形如ax2+c=0的方程时,可以用此方法求解。

⑦ 怎样解方程

如何学会解方程的方法
在小学阶段,解方程是依据四则运算中已知数与得数之间的关系进行的。我们可以采用以下三种方法来解方程。

一、直接根据四则运算中已知数与得数之间的关系,求未知数的值。

例如:3.6÷x=0.9。这是除法式子,x是除数,表示x除3.6的商是0.9。根据除法中除数等于被除数除以商的关系,求x的值。

解方程: 3.6÷x=0.9

解: x=3.6÷0.9

x=4

二、把含有未知数x的项看成是一个数,逐步求出未知数的值。

例如:2x-6=14。把含有未知数的项(2x),看成是一个数。这样6是减数,2x是被减数,14是差。先求出2x等于多少,再进一步求出x的值。

解方程: 2x-6=14

解:2x=14+6

2x=20

x=20÷2

x=10

三、通过计算,先把原方程化简,再逐步求出方程的解。

例如:3x-2.5×4=5;先计算2.5×4,然后再依照前面的方法求未知数的值。

解方程: 3x-2.5×4=5

解: 3x-10=5

3x=5+10

3x=15

x=15÷3

x=5

又如:4.5x+5.5x+3=30;先计算4.5x+5.5x,然后再依照前面的方法求未知数的值。

解方程: 4.5x+5.5x+3=30

解: (4.5+5.5)x+3=30

10x+3=30

10x=30-3

10x=27

x=27÷10

x=2.7

练习:

解下列方程。

1.2-x=0.4 2.5x=63x+5=20 6x-14=10

7x-2x=5 (8+x)×8=120 5.4-3x=2×2.1 5x-2x-7=14
解方程怎么解
解方程的步骤(1)有括号就先去掉(2)移项:将含未知数的项移到左边,常数项移到另右边(3)合并同类项:使方程变形为单项式(4)方程两边同时除以未知数的系数得未知数的值例如:3+x=18 解: x =18-3 x =15 ∴x=15是方程的解—————————— 4x+2(79-x)=192 解:4x+158-2x=192 4x-2x+158=192 2x+158=192 2x=192-158 2x=34 x=17 ∴x=17是方程的解—————————— πr=6.28(只取π小数点后两位)解这道题首先要知道π等于几,π=3.1415926535,只取3.14,解:3.14r=6.28 r=6.28/3.14=2 不过,x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。有些式子右边枯轿有x,为了简便算,可以调换位置。 一元三次方程求解 一元三次方程的求根公式用通常的演绎思维是作不出来的,没漏肆用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以搜迟(2)可化为x^3=(A+B)+3(AB)^(1/3)x,移项可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得(6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即(8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p......
请问怎么解方程?用计算器
参考TI84 Plus 中文说明

wenku./...=51NaN
怎么做?????解方程 比例
解:设能做a根

126:x=9:5

9x=126*5

x=630/9

x=70根
8+x等于20怎样解方程,
8+x=20

等式两边同时 - 8

x=20-8

x=12

⑧ 如何学会解方程的方法

在小学阶段,解方程是依据四则运算中已知数与得数之间的关系进行的。我们可以采用以下三种方法来解方程。
一、直接根据四则运算中已知数与得数之间的关系,求未知数的值。
例如:3.6÷x=0.9。这是除法式子,x是除数,表示x除3.6的商是0.9。根据除法中除数等于被除数除以商的关系,求x的值。
解方程: 3.6÷x=0.9
解: x=3.6÷0.9
x=4
二、把含有未知数x的项看成是一个数,逐步求出未知数的值。
例如:2x-6=14。把含有未知数的项(2x),看成是一个数。这样6是减数,2x是被减数,14是差。先求出2x等于多少,再进一步求出x的值。
解方程: 2x-6=14
解:2x=14+6
2x=20
x=20÷2
x=10
三、通过计算,先把原方程化简,再逐步求出方程的解。
例如:3x-2.5×4=5;先计算2.5×4,然后再依照前面的方法求未知数的值。
解方程: 3x-2.5×4=5
解: 3x-10=5
3x=5+10
3x=15
x=15÷3
x=5
又如:4.5x+5.5x+3=30;先计算4.5x+5.5x,然后再依照前面的方法求未知数的值。
解方程: 4.5x+5.5x+3=30
解: (4.5+5.5)x+3=30
10x+3=30
10x=30-3
10x=27
x=27÷10
x=2.7
练习:
解下列方程。
1.2-x=0.4 2.5x=63x+5=20 6x-14=10
7x-2x=5 (8+x)×8=120 5.4-3x=2×2.1 5x-2x-7=14

⑨ 方程式怎么解 数学

解消卜方程的方法如下:

1、直接运用四则运算中各部分之间的关系去解.如x-8=12。

加数+加数=和 一个加数=和-另一个加数。

被减数-减数=差 减数=被减数-差 被减数=差+减数。

被乘数×乘数=积 一个因数=积÷另一个因数。

被除数÷除数=商 除数=被除数÷商 被除数=除数×商大桥孝。

2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41。

先把3x看作一个数,然后再解。

3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2。

要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。

4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20。

先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。

用字母表示数滚稿的注意事项

1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写.数与数相乘,乘号不能省略。

2、当1和任何字母相乘时,“ 1” 省略不写。

3、数字和字母相乘时,将数字写在字母前面。

阅读全文

与数学方程用的方法怎么求相关的资料

热点内容
治疗扁平疣土方法 浏览:468
珍嗖啦跟米昔使用方法 浏览:204
如何学会拉筋方法 浏览:755
回忆技巧与方法 浏览:940
怎么快速补血方法 浏览:164
p型管连接方法 浏览:396
训练胯下击球的方法 浏览:118
声音调整方法有哪些 浏览:355
食用香菇种植方法 浏览:5
插座箱套的安装方法 浏览:640
如何用复利的方法辨认金子 浏览:571
怎样治疗肝病的最好方法 浏览:411
唯唯诺诺的教学方法 浏览:50
腐蚀防锈方法有哪些 浏览:626
水笼头管子快速安装方法 浏览:147
加快网站被百度收录的方法有哪些 浏览:422
渔获快速获得方法 浏览:683
ps水果人物方法步骤 浏览:888
oppo手机换主题在哪里设置方法 浏览:951
怎么检验醇基的准确方法 浏览:761