⑴ 黄金分割怎么来的
关于黄金分割的起源大多认为来自毕达哥斯拉,据说在古希腊,有一天毕达哥斯拉走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打手滑铁节奏很有规律,这个声音的比列被毕达哥斯拉用数理的方式表达出来。被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法“。在金字塔建成1000年后才出现毕达哥斯拉定律,可见这很早既存在。只是不知这个谜底。
由于公元前6世纪弯薯迹古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《帕乔利》时吸收了欧多克索斯的研究成果,进埋并一步系统论述了黄金分割,成为最早的有关黄金分割的论着。
中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此着书立说。德国天文学家开普勒称黄金分割为神圣分割。
到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最着名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
⑵ 黄金分割数是怎么算出来的
你解下面的方程组:
a/b=b/(a+b)
a+b=1
可以宽此得备唤到下面的解:
a=0.382
b=0.618
黄金分割数就这么得来的。慎滚迅
⑶ 黄金分割是怎么来的
是由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。他认为所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波那契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,5/8,8/13,13/21,...近似值的。 黄金分割在文艺复兴前后,经搏罩败过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论着。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此着书立说。德国天文学家开普勒称黄金分割为神圣分割。 其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最着名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代由华罗庚提倡在中国推广。
编辑本段简介
概念
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1)/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1÷0.618≈1.618 (1-0.618)÷0.618≈0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 黄金分割
发现
关于黄金分割比例的起源大多认为来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数理的方式表达出来。被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法”。在金字塔建成1000年后才出现毕达哥拉斯定律,可见这很早就存在。只是不知这个谜底。
编辑本段算路率
简介
理笔基颤录百算分制胜法规律计策,观测远古的几轮计算,黄金轮算法不一样数字,论发展发现史,由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索闷袭斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论着。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此着书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最着名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
欧洲
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分(长的一部分)对于全部之比,等于另一部分(短的一部分)对于该部分之比。而计算黄金分割最简单的方法,是计算菲波那契数列1,1,2,3,5,8,13,21,35……后二数之比2/3,3/5,5/8,8/13,13/21,21/35……近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。
亚洲记载
其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证,欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
编辑本段详细内容
黄金分割数是无限不循环小数
a b a:b=(a+b):a 通常用希腊字母Ф表示这个值。 黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。 确切值为(√5-1)/2
⑷ 黄金分割的计算公式怎么来的
首先要了解黄金分割点的由来:
作枯棚绝一条线段AB,然后在线段AB上取一点C,使得AC/CB=CB/AB 这个点是视觉上的最美的点也是很有现实意义的一点,C点即为黄金分割点。
好了,黄金分割点画出来了。该怎么求黄金和没分割值呢
设线段AB长度为1,CB(较长的那一段)为x
由AC/CB=CB/AB得:(1-x)/x=x
即:x^2+x-1=0
解的方程的解为:
x=(-1+根号5)/2 或x=(-1-根号5)/2 (线段长度不可能为负,此根舍去)
所以黄金分没姿割值为(-1+根号5)/2
⑸ 黄金分割法基本原理
黄金分割法原理属于一种数学规律。股市中的黄金分割法正是来源自黄金分割率,是首昌指计算强阻力位或强支撑位的一种方法,人们认为这些与黄金分割率有关,可用这些数字来预判点位。
黄金分割法原理股价上升行情中,脱离低档,依照黄金分割率,它的涨势会在上涨幅度接近或达到0.382与0.618时容易出现反压,有反转下跌而结束一段上升行情的可能。当上升行情展开时,要预测股价上升的能力与可能反转的价位时.可将前股价行情下跌的最低点乘以0.382或。618作为可能上升的幅度的预测。当股价上涨幅度越过1倍时,其反压点则以1.382或1.618的2倍进行计算得出。
例如,当下跌行情结束前,某股的最低价为10元,那么,股价反转上升时,投资人可以预先计算出各种不同情况下的反压价位,也就是:lox(1+0.382)二13.82元或10x(1+0.618)二16.18元。然后,再依照实际股价变动情形做斟酌。股价迅瞎下跌行情中,脱离高档,依照黄金分割率,它的跌势也会在下跌幅度接近或达到0.382与0.618时容易出现支撑,有反转上升而结束下跌行情的可能。计算方法与上升行情的黄金分割率公式相同。
再例如,上升行情结束前,某股最高价为20元,那么.股价反转下跌时,投资人可以计算出各种不同的支撑价位,也就是20x(1一0.382)二12.36元或者是20x(1一0.618)=7.64元。需要注意的是.黄金分割法不适用于某些极易出现暴涨基者配跌的股票,刻板地使用黄金分割法会降低准确性。
黄金分割法原理无论用黄金分割还是其他的方法计算价格,每种方法都是一个参考,不会百分之百的正确。对于炒股来说,无论采用什么方法,挣钱才是硬道理。新股民需要找到适合自己的买入方法。
⑹ 黄金分割的应用原理是什么
my.fx678黄金分割率是自然界与社会中存在的一种数学规律。黄金分割法来源自黄金分割率,是计算强阻力位或强支撑位的一种方法,即人们认为指数或股价运动的阻力位或支撑位会与黄金分割率的一系列数字有关,可用这些数字来预判点位。
黄金分割的一般方法
黄金分割中最重要的数字是:
0.382 0.618
1.382 1.618 2
其具体应用是:
1.在上升厅扰行情掉头向下时,可用近期上升行情的涨幅乘以以上第一行数字,再加上近期上升行情的起点,得到此次下跌的强支撑位。
如2007年10月17日以来的调整,可视为是对2005年6月6日以来的大牛市行情的调整,上证指数起点为2005年6月6日的998点,高点为2007年10月16日的6124点,则用黄金分割法得到:
则4166点和2956点附近可能成为本轮调整的强支撑位,这也正是某些机构报告中强调4200点附近会是本轮调整的第一道强支撑位的依据。
2.在下降行情掉头向上时,可用近期下跌行情的低点乘以以上第二行数字,得到此次上涨的强阻力位。
如若预期上证指数2007年10月17日以来的调整的最低点为4200点,而调整到位后将演绎上升行情,则用黄金分割法得到:
4200×1.618=6796
4200×1.382=5804
则6796点和5804点附近可能成为上证指数本轮调整的强支撑位,这也正是某些机构报告中强调6800点附近会是本轮调整的强阻力位的依据。
黄金分割法只是提供了一些不容易被突破的阻力位或支撑位,投资者需要确认该阻力位或支撑位是否被突破后再做投资决策,而不是一到阻力位就卖出或一到支撑位就买进。黄金分割率所用于预测的周期越长,准确性往往越高。
初级帝纳波利点位法
国际投资大师乔尔?帝纳波利(Joe. Dinapoli)创造的帝纳波利点位,其理论基础和出发点就是黄金分割率。正好借此了解一下初级帝纳波利点位法。
假如从 A 下行到 B点,然后折返到 C 点 ,然后从C点继续下行,那它会在哪里止跌呢?
首先扮袜旦把A到B当中的距离乘以0.382,能够从 C 出发找到 COP;第二就是把 A 到 B 距离乘以0.618,从C 向外扩展找到 OP;第三把 A 到 B垂直距离乘以 1,在 C 向外扩展得到XOP。这样就获得了下跌途中好祥的三个支撑位。
⑺ 黄金分割0.618是怎么计算出来的
黄金分割是将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值。
计算方法如下:设一条线段AB的长度为a,C点在靠近B点的黄金分割点上,且AC为b,则a比b就是黄金数;
(7)黄金分割的方法是怎么得来的扩展阅读:
黄金分割的起源:现在人一般认为,黄金分割是由公元前6世纪的毕达哥拉斯发现的。系统论述黄金分割的最早记载是欧几里得的孙改《几何原本》,在该书第四卷中记述了用黄金分割作五边形、十边形的的问题,在第二卷第11节中详细讲了黄金分割的计算方法,并称
0.618叫做“黄金数”。
在《几何原本》中把它称为“中末比”。直到文艺复兴时期,人们重新发现了古希腊数学,并且发现这种比例广泛存在于许多图形的自然结构之中,因而高度推崇中末比的奇妙性质和用途。
最早在着作中使用“黄金分割”这一名称的是德国数学家M·欧姆,他是发现电学的欧姆定律的G·S·欧姆的弟改颂弟。他在自己的着作《纯粹初等数学》(第二版,1835)中用了德文字:“der
goldene schnitt(黄金分割)”来表述中末比,以后,这一称呼才逐渐流行起来。
参考资料来源:网络-黄金分割
⑻ 黄金分割线怎么算出来的
黄金分割线分为两种:单点的黄金分割线和两点黄金分割线.
以下就是方法:画单点有两个因素(一是黄金数字,二是最高或最低点)
画黄金分割线的第一步是记住若干个特殊的数字:
0.191
0.382
0.618
0.809
最为重要,股价极容易在由这4个数产生
的黄金分割线处产生支撑和压力。
第二步是找到一个点春散。这个点是上升行情结束,调头向下的最高点,或者是下
降行情结束,调头向上的最低点。当然,我们知道这里的高点和低点都是指一
定的范围,是局部的。只要我们能够确认一趋势(无论是上升还是下降)已扒源氏经结
束或暂时结束,则这个趋势的转折点就可以作为进行黄金分割的点。这个点一
经选定,我们就可以画出黄金分割线了。
在上升行情开始调头向下时,我们极为关心这次下落将在什么位置获得支撑。
黄金分割提裂裤供的是如下几个价位。它们是由这次上涨的顶点价位分别乘上上面
所列的几个特殊数字中的几个。假设,这次上涨的顶点是10元,则
这几个价位极有可能成为支撑,其中6.18和3.82的可能性最大。
⑼ 黄金分割是谁提出的是怎么来的
黄金分割是毕达哥拉斯提出的。
据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用键陆空数学的方式表达出来。
黄金分割最早记录在公元前6世纪,关于黄金分割比例的起源大多认为来自毕达哥拉斯学派。公元前4世纪,古希腊数学家欧多克索斯第一个稿瞎系统研究了这一问题,并建立起比例理论。公元前300年左右欧悉陆几里得吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,其《几何原本》成为最早的有关黄金分割的论着。