导航:首页 > 知识科普 > 大数字简便方法

大数字简便方法

发布时间:2023-05-10 10:24:21

❶ 数学计算简便方法

简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。正差如将上式中的+变为x,运用乘法结合律也可简便计算
乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个配清庆数相乘;或先培握把后两个数相乘,再和第一个数相乘,积不变。它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
乘法交换律
乘法交换律用于调换各个数的位置:a×b=b×a
加法交换律
加法交换律用于调换各个数的位置:a+b=b+a
加法结合律
(a+b)+c=a+(b+c)

❷ 常用的简便运算方法

1、十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2、头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3、第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4、几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6、十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。

❸ 数学的简便方法口诀

在小学数学中,简便运算一直是一个难题,不少学生能流利地背诵运算定理,但在实际解题过程中,往往无从下手。下面是我和学生在实际解题过程中总结的一些简便运算口诀,希望能给大家带来一些新的启示。

1.在同级运算中,可以任意交换数字的位置,但要连着前面的符号一起交换。(加法或乘法交换律)

‍2.在同级运算中,加号或乘号后面可以直接添括号,去括号。减号、除号后面添括号,去括号,括号里面的要变号。(加法或乘法结合律)

3.凑一法,凑十法,凑百法,凑千法:“前面凑九,末尾凑十”。

必记:25找4凑100,125找8凑1000 (凑整思想)

4.综合口诀(含各种运算定律)

简便运算凑整数,先交换来后结合;一数连续减几数,等于这数减去后几和;一数连续除以几数,等于这数除以后几积。几数和乘一个数,分别相乘再相加,几数差乘一个数,分别相乘再相减,相同几数提出来,剩下再用括号括起来。多加要减,多减要加,少加要加,少减要减。

例:

❹ 数学简便计算,有哪几种方法

数学简便计算方法

一、运用乘法分配律简便计算

简便计算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基准数法

在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法结合律法

对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

这个方法实际上是运用了乘法分配律,将相同因数提取出来。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

❺ 大数怎么写比较方便(6位数以上)

如何写大数字更方便(超过6位)。对读写数字进行分类,每个级别包括数十万;万级包括万级、百万级、万级;数十亿的水平包括数十亿、数十亿、数十亿。这些,十,一亿,一千万,十万,一百万等等,都是计数戚悔的单位。“大数”是指大于6位的数掘磨字,即大于100000。这些大高散正数更便于书写,因此您应携带计数单元。例如,630万可以写成630万。1250万可以写成:1.25亿

❻ 那些大数字的简便计算怎么解

1、凑整
2、利用乘法分配率

❼ 数学因式分解,遇到这种数字较大的,有什么简便方法可以解出来吗


①分解因式是多项式的恒等变形,要求等式左边必须是多项式

②分解因式的结果必须是以乘积的形式表示

③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数

④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

分解步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”

(7)大数字简便方法扩展阅读

主要方法:

1、提取公因式法:

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

提公因式法基本步骤:

(1)找出公因式

(2)提公因式并确定另一个因式:

①第一步找公因式可按照确定公因式的方法先确定系数再确定字母

②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式

③提完公因式后,另一因式的项数与原多项式的项数相同。

2、公式法:

把乘法公式的平方差公式和完全平方公式反过来,得到因式分解的公式:

平方差公式:a2-b2=(a+b)·(a-b);

完全平方式:a2±2ab+b2=(a±b)2;

3、分组分解法:

利用分组分解因式的方法叫做分组分解法,ac+ad+bc+bd=a·(c+d)+b·(c+d)=(a+b)·(c+d)

其原则:

①连续提取公因式法:分组后每组能够分解因式,每组分解因式后,组与组之间又有公因式可提。

②分组后直接运用公式法:分组后各组内可以直接应用公式,各组分解因式后,使组与组之间构成公式的形式,然后用公式法分解因式。

4、十字相乘法:a2+(p+q)·a+p·q=(a+p)·(a+q)。

5、解方程法:

通过解方程来进行因式分解,如

x2+2x+1=0 ,解,得x1=-1,x2=-1,就得到原式=(x+1)×(x+1)

6、待定系数法:

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

❽ 数学简便计算,有哪几种方法

简便计算主要有三大方法,分别是加减凑整、分组凑整、提公因数法。

它采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算。

就像68+77=?

大多数人不一定立刻能算出结果,

如果换成70+75=?

相信每一个人都可以一口算出和是145。

这里其实就是把77拆分成2+75,

68+77

=68+2+75

=70+75

=145

遇见复杂的计算式时,

先观察有没有可能凑整,

凑成整十整百之后再进行计算,

不仅简便,而且避免计算出错。

①加减凑整

【例题1】999+99+29+9+4=?

题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:

999+99+29+9+4

=999+99+29+9+1+1+1+1

=999+1+99+1+29+1+9+1

=1000+100+30+10

=1140

【例题2】5999+499+299+19=?

看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。

没有枪没有炮,自己去创造!

先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?

5999+499+299+19

=5999+1+499+1+299+1+19+1-4

=6000+500+300+20-4

=6816

②分组凑整

在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。

【例题3】100-95+92-89+86-83+80-77=?

题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。

根据加法减法运算性质,我们给相邻的项加上括号。

100-95+92-89+86-83+80-77

=(100-95)+(92-89)+(86-83)+(80-77)

=5+3+3+3

=14

凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。

③提取公因数法

这就需要用到乘法分配律提取公因数,

又称为提取公因数法。

如果没有公因数,我们可以采取乘法结合律变化出公因数。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。

【例题4】47.9x6.6+529x0.34=?

很明显题目中的6.6+3.4=10,我们想办法凑出一个3.4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,创造出一个47.9,方便我们提取公因数。

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+(47.9+5)x3.4

=47.9x(6.6+3.4)+17

=496

简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。

❾ 简便运算的技巧和方法有哪些

数学简便计算方法:

一、裂项法

分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。

常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”。

(3)分母上几个因数间的差是一个定值。

二、基准数法

在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法结合律法

对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、去尾法

在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。

例题

2356-159-256

=2356-256-159

=2100-159

=1941

算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256,可使计算简便。

五、提取公因式法

这个方法实际上是运用了乘法分配律,将相同因数提取出来。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

❿ 数学简便计算,有哪几种方法

一、整体简便计算。整个一道算式可以用简便方法计算,这种形式最为常见。例如:
=1.14×10
=11.4
二、局部简便计算。一道算式中局部可以进行简便计算,这种形式也不少见。
三、中途简便计算。开始计算并不能简便计算,而经过一两步后却能进行简便计算,这种情况最容易忽视。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重复简便计算。在一道题里不止一次地进行简便计算,这种情况往往不注意后一次简便计算。例如:
=8×55×0.125
=8×0.125×55
第二次
=1×55
=55
一简算的根据
a、乘法运算定律
b、加法运算定律
c、减法、除法的运算性质
二简算的类型
a、直接简算
b、部分简算
c、转化简算
d、过程简算
三简算的几种公式:
加法:a+b+c=a+(b+c)(加法结合律)
乘法:a×b×c=a×c×b(乘法交换律)
a×b×c=a×(b×c)(乘法结合律)
(a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
减法:a-b-c=a-c-b(减法交换律)
a-b-c=a-(b+c)(减法结合律)
除法:a÷b÷c=a÷c÷b(除法交换律)
a÷b÷c=a÷(b×c)(除法结合律)
(a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除数是两个数的差或和的情况下才能进行分配
希望帮到你
望采纳
谢谢
加油

阅读全文

与大数字简便方法相关的资料

热点内容
404x125的简便运算方法 浏览:8
水泥多孔砖砌墙方法图片 浏览:705
孢谷草种植方法 浏览:283
莴笋青菜种植方法 浏览:736
前列腺增生怎么治疗方法 浏览:846
12伏蓄电池存电量计算方法 浏览:219
冲压工36技计算方法计算实例 浏览:858
骨化三醇免疫治疗方法 浏览:306
三联疗法如何服用方法 浏览:426
93乘43加91的简便方法 浏览:393
海螺吃了头晕有什么方法解决 浏览:812
如何写通项方法 浏览:674
小学生如何写作业快的方法 浏览:347
卫星手机夜景拍摄方法 浏览:97
怎么做瘦肚子最快方法 浏览:11
考场查词典技巧和方法 浏览:639
魔芋水的制作方法视频 浏览:493
同分母分数加减法教学方法分析 浏览:323
平焊单面焊双面成型的教学方法 浏览:601
查询电脑图片有多张的方法 浏览:429