导航:首页 > 知识科普 > 有哪些测定维c含量的方法

有哪些测定维c含量的方法

发布时间:2023-05-06 01:16:48

Ⅰ 维生素c的检验方法

维生素C 药典2005

拼音名:Weishengsu C

英文名:Vitamin C

【性状】 本品为白色结晶或结晶性粉末;无臭,味酸;久置色渐变微黄;水溶液显酸性反应。 本品在水中易溶,在乙醇中略溶,在三氯甲烷或乙醚中不溶。

熔点 本品的熔点(附录Ⅵ C)为190-192℃.熔融时同 时分解。

比旋度 取本品,精密称定,加水溶解并定量稀释制成每1ml中约含0.10g的溶液,依法测定(附录Ⅵ E),比旋度为+20.5°至+21.5°。

【鉴别】 (1)取本品0.2g,加水10ml溶解后,分成二等份,在一份中加硝酸银试液0.5ml即生成银的黑色沉淀。在另一份中,加二氯靛酚钠试液1-2滴,试液的颜色即消失。
(2)本品的红外光吸收图谱应与对照的图谱(光谱集450图)一致。

【检查】 溶液的澄清度与颜色 取本品3.0g,加水15ml,振摇使溶解,溶液应澄清无色;如显色,将溶液经4号垂熔玻璃漏斗滤过,取滤液,照紫外-可见分光光度法(附录Ⅳ A),在420nm的波长处测定吸光度,不得过0.03。

炽灼残渣 不得过0.1%(附录Ⅷ N)。

铁 取本品5.0g两份,分别置25ml量瓶中,一份中加0.1mol/L硝酸溶液溶解并稀释至刻度,摇匀,作为供试品溶液(B);另一份中加标准铁溶液(精密称取硫酸铁铵863mg.置1000ml量瓶中,加1mol/L硫酸溶液25ml,加水稀释至刻度,摇匀,精密量取10ml,置100ml量瓶中,加水稀释至刻度.摇匀)1.0ml,加0.1mol/L硝酸溶液溶解并稀释至刻度.摇匀,作为对照溶液(A)。照原子吸收分光光度法(附录Ⅳ D).在248.3nm的波长处分别测定,应符合规定。

铜 取本品2.0g两份,分别置25ml量瓶中.一份中加0.1mol/L硝酸溶液溶解并稀释至刻度,摇匀,作为供试品溶液(B);另一份中加标准铜溶液(精密称取硫酸铜393mg.置1000ml量瓶中,加水稀释至刻度,摇匀,精密量取10ml,置100ml量瓶中,加水稀释至刻度,摇匀)1.0ml,加0.1mol/L硝酸溶液溶解并稀释至刻度,摇匀,作为对照溶液(A)。照原子吸收分光光度法(附录Ⅳ D),在324.8nm的波长处分别测定,应符合规定。

重金属 取本品1.0g,加水溶解成25ml,依法检查(附录Ⅷ H第一法),含重金属不得过百万分之十。

细菌内毒素 取本品,加碳酸钠(170℃加热4小时以上)适量,使混合,依法检查(附录Ⅺ E),每1mg维生素C中含内毒素的量应小于0.02EU(供注射用)。

【含量测定】 取本品约0.2g,精密称定,加新沸过的冷水100ml与稀醋酸10ml使溶解,加淀粉指示液1ml,立即用碘滴定液(0.05mol/L)滴定,至溶液显蓝色并在30秒钟内不 褪。每1ml碘滴定液(0.05mol/L)相当于8.806mg的C6H8O6。

【贮藏】 遮光,密封保存。

【制剂】 (1)维生素C片(2)维生素C泡腾片(3)维生素C泡腾颗粒(4)维生素C注射液(5)维生素C颗粒

【化学成分】 本品为L-抗坏血酸。含C6H8O6不得少于99.0%。

【类别】 维生素类药

Ⅱ 测定维生素C注射液的含量还有哪些方法

维生素C注射液—维生素C测定—中和滴定法
应用范围:
本方法采用滴定法测定维生素C注射液中维生素C的含量。
本方法适用于维生素C注射液。
方法原理:
供试品加新沸过的冷水与稀醋酸使溶解,加淀粉指示液,立即用碘滴定液(0.05mol/L)滴定,至溶液显蓝色并在30秒内不褪,读出碘滴定液使用量,计算维生素C的含量。

Ⅲ 维生素c含量的测定的方法有哪些各有什么优缺点

测定维生素c有多种方法,包括采用i2或二氯靛酚
(dpi)进行氧化还原滴定。一般来说,滴定法是一种快速、
简便、准确的技术,它通过滴定剂和被滴定物质的等当量反
应,精确测定被测物质的含量。dpi对于维生素c具有良好的
选择性,是一种理想的氧化剂。
传统的滴定法是手工滴定,根据指示剂颜色的变化确定
终点,通过测量滴定剂的消耗量,计算被测物质的含量。手
工滴定有很多不足:手工控制误差较大,计算复杂,针对不
同的反应需要特殊指示剂。梅特勒-托利多的自动电位滴定仪
解决了这一问题,通过测量滴定反应中电位的变化确定终
点,全自动操作、计算,测量快速,结果准确。梅特勒-托利
多的滴定仪配有记忆卡软件包,存储有成熟滴定方法,可方
便快速解决实际应用问题,并且稍作改动就能作为新的测定
的实验方法。

怎么测定蔬菜或水果中维他命C的含量

1、证明蔬菜(水果)中维生素c的存在
2、比较不同蔬菜(水果)中维生素c含量的多少
【实验原理】
本实验利用维生素c的还原性,使其与氧化性的i2反应:
淀粉溶液遇到碘会变成蓝紫色,这是淀粉的特性。维生素c能与蓝紫色溶液中的碘发生作用,使溶液变成无色。通过这个原理,可以用来检验一些蔬菜中的维生素c。通过消耗i2的量可以计算维生素c的含量。
【仪器药品】酸式滴定管,锥形瓶,研钵,碘水,淀粉试液
【实验步骤】
1、取新鲜蔬菜或水果100克,切碎,磨成糊状,挤出汁液。
2、取汁液10
ml,加淀粉溶液数滴。
3、用常温下i2的饱和水溶液进行滴定,至溶液显蓝色。根据不同蔬菜或水果消耗的碘水的量判断维生素c含量的多少。
【实验讨论】
1、方法选择:
此方法简单,操作易行,现象明显,适合作为中学实验。
此实验有两种操作方法:①用碘水滴定蔬菜或水果汁液,②用蔬菜或水果汁液滴定碘水。对于汁液较少的蔬菜或水果,选择方法①较合适;对于方法②终点较易判断,但需要较多的汁液。
2、维生素c的提取:
对于汁液较少的蔬菜或水果,需要使用提取液,可选用的提取液如下:
①2%草酸②...使溶液变成无色;对于方法②终点较易判断:ph值对此反应有影响、证明蔬菜(水果)中维生素c的存在
2、维生素c的提取,需要脱色可选的脱色剂如下①30%znac溶液和15%k4fe(cn)6②活性炭③白陶土
4,可以用来检验一些蔬菜中的维生素c,加淀粉溶液数滴,锥形瓶,可选用的提取液如下、取新鲜蔬菜或水果100克。
2。根据不同蔬菜或水果消耗的碘水的量判断维生素c含量的多少:
此方法简单,挤出汁液:为了避免其他物质的干扰,研钵:
对于汁液较少的蔬菜或水果,操作易行。通过消耗i2的量可以计算维生素c的含量,需要使用提取液、比较不同蔬菜(水果)中维生素c含量的多少
【实验原理】
本实验利用维生素c的还原性,切碎,碘水。
3。通过这个原理,选择方法①较合适,但需要较多的汁液。对于汁液较少的蔬菜或水果、用常温下i2的饱和水溶液进行滴定,使其与氧化性的i2反应:
有些蔬菜或水果汁液颜色较深,对滴定终点的判断有影响。
此实验有两种操作方法。
2、其它问题、脱色剂。
【实验讨论】
1、取汁液10
ml:
淀粉溶液遇到碘会变成蓝紫色、方法选择,磨成糊状,淀粉试液
【实验步骤】
1:
①2%草酸②偏磷酸-醋酸溶液
3,适合作为中学实验,这是淀粉的特性。
5,整个过程不要超过2分钟。维生素c能与蓝紫色溶液中的碘发生作用,②用蔬菜或水果汁液滴定碘水,至溶液显蓝色。
【仪器药品】酸式滴定管,滴定要迅速,现象明显:①用碘水滴定蔬菜或水果汁液、滴定速度
1

Ⅳ 测定vc有哪几种方法,每种方法的使用范围是什么

维生素C不同的测定方法

目前研究维生素C测定方法的报道较多,有关维生素C的测定方法如荧光法、2,6-二氯靛酚滴定法、2,4-二硝基苯肼法、光度分析法、化学发光法、电化学分析法及色谱法等,各种方法对实际样品的测定均有满意的效果.

为了解国内VC含量测定方法及其应用方面的现状及发展态势.方法以"维生素C或抗坏血酸和测定"为检索词对1994~2002年中国期刊网全文数据库(CNKI)中的理工A、B和医药卫生专辑进行篇名检索,对所得有关维生素C含量测定的文献数据分别以年代、作者区域、载刊等级、样品类型、测定方法等进行计量分析.结果核心期刊载刊文献占文献总量的45.06%,其中光度法占65.69%,电化法占18.63%,色谱法占12.75%;复杂被测样品文献占文献总量的45.06%,其中光度法占60.92%,色谱法占19.54%,电化法占10.34%.结论目前国内维生素C含量测定仍以光度法为主流,但近年来色谱法,特别是HPLC法上升趋势尤为明显.

一.荧光法

1.原理

样品中还原型抗坏血酸经活性炭氧化成脱氢型抗坏血酸后,与邻苯二胺(OPDA)反应生成具有荧光的喹喔啉(quinoxaline),其荧光强度与脱氢虚枝抗坏血酸的浓度在一定条件下成正比,以此测定食物中抗坏血酸和脱氢抗坏血酸的总量。

脱氢抗坏血酸与硼酸可形成复合物而不与OPDA反应,以此排除样品中荧光杂质所产生的干扰。本方法的最小检出限为0.022g/ml。

2.适用范围

本方法适用于蔬菜、水果及其制品中总抗坏血酸的测定

3.注意事项

3.1大多数植物组织内含有一种能破坏抗坏血酸的氧化酶,因此,抗坏血酸的测定应采用新鲜样品并尽快用偏磷酸-醋酸提取液将样品制成匀浆以保存维生C。

3.2某些果胶含量高的样品不易过滤,可采用抽滤的方法,也可先离心,再取上清液过滤。

3.3活性炭可将抗坏血酸氧化为脱氢抗如链坏血酸,但它也有吸附抗坏血酸的作用,故活性炭用量应适当与准确,所以,应用天平称量。我们的实验结果证明,用2g活性炭能使测定样品中还原型抗坏血酸完全氧化为脱氢型,其吸附影响不明显。

二、2,6-二氯靛酚滴定法(还原型VC)

1、原理:

还原型抗坏血酸还原染料2,6-二氯靛酚,该染料在酸性中呈红色,被还原后红色消失。还原型抗坏血酸还原2,6-二氯靛酚后,本身被氧化成脱氢抗坏血酸。在没有杂质干扰时,一定量的样品提取液还原标准2,6-二氯靛酚的量与样品中所含维生素C的量成正比。本法用于测定还原型抗坏血酸,总抗坏血酸的量常用2,4-二硝基苯肼法和荧光分光光度法测定。

2、注意事项

⑴所有试剂的配制最好都用重蒸馏水;

⑵滴定时,可同时吸二个样品。一个滴定,另一个作为观察颜色变化的参考;

⑶样品进入实验室后,应浸泡在已知量的2%草酸液中,以防氧化,损失维生素C;

⑷贮存过久的罐头食品,可能含有大量的低铁离子(Fe2+),要用8%的醋酸代替2%草酸。这时如用草酸,低铁离子可以还原2,6-二氯靛酚,使测定数字增高,使用醋酸可以避免这种情况的发生;

⑸整个操作过程中要迅速,避免还原型抗坏血酸被氧化;

⑹在处理各种样品时,如遇有泡沫产生,可加入数滴辛醇消除;

⑺测定样液时,需做空白对照,样液滴定体积扣除空白体积。

3优点:它具有简便、快速、比较准确等优点,适用于许多不同类型样品的分析。缺点是不能直接测定样品中的脱氢抗坏血酸及结合抗坏血酸的含量,易受其他还原物质的干扰。如果样品中含有色素类物质,将给滴定终点的观察造成困难。在酸性环境中,抗坏血酸(还原型)能将染料2,6—DCIP还原成无色的还原型2,6—DCIP,而抗坏血酸则被氧化成脱氢抗坏血酸。氧化型2,6—DCIP在中性或碱性溶液中呈蓝色,但在酸性溶液中则呈粉红色。因此,当用2,6—DICP滴定含有抗坏血酸的酸性溶液时,在抗坏血酸未被全部氧化前,滴下的2,6—DCIP立即被还原成无色,一旦溶液中的抗坏血酸全部被氧化时,则滴下微量过剩的2,6—DCIP便立即使溶液显示淡粉红色或微红色,此时即为滴定终点,表示溶液中的抗坏血酸刚刚全部被氧化。依据滴定时2,6—DCIP标准溶液的消耗量(ml),可以计算出被测样品中抗坏血酸的含量。氧化型2,6—DCIP与还原型抗坏血酸常差橡敏在稀草酸或偏磷酸溶液中进行反应。即先将样品溶于一定浓度的酸性溶液中或经抽提后,再用2,6—DCIP标准溶液滴定至终点。

食物和生物材料中常含有其他还原物质,其中有些还原物质可使2,6—DCIP还原脱色。为了消除这些还原物质对定量测定的干扰,可用抗坏血酸氧化酶处理,破坏样品中还原型抗坏血酸后,再用2,6—DCIP滴定样品中其他还原物质。然后从滴定未经酶处理样品时2,6—DCIP标准溶液的总消耗量中,减去滴定非抗坏血酸还原物质2,6—DCIP标准溶液的消耗量,即为滴定抗坏血酸实际所消耗的2,6—DCIP标准溶液的体积,由此可以计算出样品中抗坏血酸的含量。另外,还可利用抗坏血酸和其他还原物质与2,6—DCIP反应速度的差别,并通过控制样品溶液在pH1—3范围内,进行快速滴定,可以消除或减少其他还原物质的作用,一般在这样的条件下,干扰物质与2,6—DCIP的反应是很慢的或受到抑制。生物体液(如血液、尿等)中的抗坏血酸的测定比较困难,因为这些样品中抗坏血酸的含量很低,并且存在许多还原物质的干扰,同时还必须预先进行脱蛋白处理。在生物体液中含有巯其、亚硫酸盐及硫代硫酸盐等物质,它们都能与DCIP反应,但反应速度比抗坏血酸慢得多。样品中巯基物质对定量测定的干扰,通常可以藉加入对—氯汞苯甲酸(简称PCMB)而得到消除。

三、2,4-二硝基苯肼法

1.原理

总抗坏血酸包括还原型、脱氢型和二酮古乐糖酸。样品中还原型抗坏血酸经活性炭氧化为脱氢抗坏血酸,再与2,4-二硝基苯肼作用生成红色脎,脎的含量与总抗坏血酸含量成正比,进行比色测定。

2.适用范围

本方法适用于蔬菜、水果及其制品中总抗坏血酸的测定。

这是脎比色法,单独评价是因为目前它作为Vc测定的国标法之一,是一种全量测定法,它跟以前的苯肼法原理相近。首先将样品中的还原型V氧化为脱氢型V,然后与2,4—二硝基苯肼作用,生成红色的脎,将脎溶于硫酸后进行比色。最近国标中该法强调空白,每个样品及标准系列均需作对应空白,这样消除色泽、背景不一的误差。在实际杨梅汁Vc测定中,操作时间长,操作要求较严格,试剂较多,就一般实验室而言是目前可以采用的方法。

四碘量法

1、维生素C的原理

维生素C包括氧化型、还原型和二酮古乐糖酸三种。当用碘滴定维生素C时,所滴定的碘被维生素C还原为碘离子。随着滴定过程中维生素C全被氧化,所滴入的碘将以碘分子形式出现。碘分子可以使含指示剂(淀粉)的溶液产生蓝色,即为滴定终点。

2、注意事项

(1)看到红棕色出现时要放慢滴定的速度。

(2)以显蓝色在30s内不褪色为滴定终点。

五L-抗坏血酸(维生素C)测定试剂盒(酶学方法)

1.应用于食品,饮料及生物制品检测

2.比色方法

此方法用于检测水果和蔬菜(如马铃薯),水果和蔬菜产品(如西红柿酱、泡菜、果酱、果汁),婴儿食品,啤酒,饮料,流食,粉状和烘烤剂,肉产品,奶制品,葡萄酒,还有动物饲料,医药品(如维生素配制、阵痛药、退烧药)和生物样品中的L-抗坏血酸(维生素C),

3.分析物

L-抗坏血酸不定量的分布于动物和植物中。人类不能自身生产L-抗坏血酸,因此必须由外源(vitaminC)提供。一般情况下来源于水果和蔬菜中,出于技术原因,L-抗坏血酸曾被用于食品工业中的抗氧化剂。它是一种相对敏感的物质,L-抗坏血酸的检测非常适用于从原始水果和蔬菜中加工食品的质量评定。

L-抗坏血酸用于医药品生产中的组成部分,如维生素产品和阵痛药,另外,它还用于动物饲料添加剂中。

4.原理

L-抗坏血酸(x-H2)+MTT+PMS—>dehydroascorbate(x)+MTT-formazan+H+X

L-抗坏血酸+½O2AAO——>dehydroascorbate+H2OX

5.特异性

在给定的条件下,此方法特别针对于L-抗坏血酸。合成的D-阿拉伯抗坏血酸/阿拉伯糖型抗坏血酸能作为抗氧化剂,也能反应,但反应速度较慢。

6.灵敏度

测定灵敏度为0.005个吸光度单位,样品体积为1.600ml,此相当于0.1mg/l样品溶液中的L-抗坏血酸浓度。0.015个吸光度单位的差异能造成0.3mg/l检测限,样品最大体积为1.600ml.。

7.线性

测定的线性范围为0.5ugL-抗坏血酸(0.3mgL-抗坏血酸/l样品溶液体积为1.600ml)到20ugL-抗坏血酸(0.2gL-抗坏血酸/l样品溶液体积为0.100ml)

8.精密度

在用一个样品做重复实验时,可能会产生0.005-0.010个吸光度单位的差异。标准的相对偏差(变异系数)大约为1-3%。当分析检测数据时,要考虑到L-抗坏血酸的水溶液稳定性较差,尤其是重金属离子或氧存在时。

9.干扰及错误来源

粮食的成分不经常干扰实验。高浓度的酒精和D-山梨酸醇能降低反应速度,大量的亚硫酸盐必须通过添加甲醛来去除。醋酸抑制酶AAO。金属和亚硫酸盐离子可以导致L-抗坏血酸的自发分解。

10.试剂盒包括内容

1.磷酸盐/柠檬酸缓冲液————pH值大约3.5;MTT

2.AAO(坑坏血酸-氧化酶)——每板约17UAAO

3.PMS溶液

六.磷钼蓝分光光度法测定维生素C

基于在一定的反应条件下,维生素C可以定量地将磷钼酸锭还原成磷钼蓝,提出了一种新的测定维生素C的分光光度法。该方法很方便、快速地测定生物、药物等试样中的维生素C,准确度和重复性均达到令人满意的程度。

1适用范围

本标准适用于果品、蔬菜及其加工制品中还原型抗坏血酸的测定(不含二价铁、二价锡、一价铜、二氧化硫、亚硫酸盐或硫代硫酸盐),不适用于深色样品。

2测定原理

染料2,6-二氯靛酚的颜色反应表现两种特性,一是取决于其氧化还原状态,氧化态为深蓝色,还原态变为无色;二是受其介质的酸度影响,在碱性溶液中呈深蓝色,在酸性介质中呈浅红色。

用蓝色的碱性染料标准溶液,对含维生素C的酸性浸出液进行氧化还原滴定,染料被还原为无色,当到达滴定终点时,多余的染料在酸性介质中则表现为浅红色,由染料用量计算样品中还原型抗坏血酸的含量。

七.二甲苯-二氯靛酚比色法

1适用范围

测定深色样品中还原型抗坏血酸。

2测定原理

用定量的2,6-二氯靛酚染料与试样中的维生素C进行氧化还原反应,多余的染料在酸性环境中呈红色,用二甲苯萃取后比色,在一定范围内,吸光度与染料浓度呈线性相关,收剩余染料浓度用差减法计算维生素C含量。

八.近红外漫反射光谱分析法(NIRDRSA)

自1965年首次应用于复杂农业样品分析后,因其具有样品处理简单、分析速度快等优点,逐渐受到分析界的重视。此法已广泛应用于石油、纺织、农业、食品、药物分析等领域[1,2]。在药物分析中,NIRDRSA可以进行定性鉴别、定量分析等工作。

维生素C是一种不稳定的二烯醇化合物,其药典[3]含量测定方法为碘量法。我们采用近红外漫反射光谱技术直接测定维生素C含量,样品无需预处理,方法简便,结果可靠。

这是因为,近红外谱区光的频率与有机分子中C-H,O-H,N-H等振动的合频与各级倍频的频率一致,因此通过有机物的近红外光谱可以取得分子中C-H,O-H,N-H的特征振动信息。由于近红外光谱的谱带较宽,谱图重叠严重,不能用特征峰等简单方法分析,需要运用计算机技术与化学计量学方法。本实验应用的是偏最小二乘法(PLS)[4],首先利用定标集建立预测模型,然后将预测集作为未知样本,根据预测模型进行预测。

对所选择的谱区范围,采用对反射吸光度的MSC(散射校正)预处理,对25个样品进行交叉验证,即选择一个样品,从校正集中除去该样品对应的光谱和浓度数据,并设光谱主成分数为1,循环迭代样品数和主成分数,计算预测残差平方和,确定所需主成分数。若主成分选择过小,会丢失样品信息,过大会造成过度拟合。当主因子为2时,预测残差平方和值最小,为2.029,故选择主因子数为2,建立最佳PLS校正数学模型。

九电位滴定法

1.原理:根据滴定过程中电池电动势的变化来确定反应终点.

Pt为指示电极,甘汞作参比电极

E池=E+-E-+E液接电位=EI2/I-+k(常数)

2.原理(具体来说:)

随着滴定剂的加入,由于发生化学反应,待测离子浓度将不断变化;从而指示电极电位发生相应变化;导致电池电动势发生相应变化;计量点附近离子浓度发生突变;引起电位的突变,因此由测量工作电池电动势的变化就能确定终点。

3.计算式:(与碘量法相同)Wvc=C(I2)V(I2)M(vc)/m(vc)*100%

4.优点:

解决了滴定分析中遇到有色或浑浊溶液时无法指示终点的问题

用线性电位滴定法分析抗坏血酸,抗坏血酸回收率为99.80%~101.5%,相对标准偏差为0.61%;分析维生素C片中的抗坏血酸,相当标示量为98.90%~100.5%,相对标准偏差不大于0.48%,说明线性电位滴定法分析维生素C片中的抗坏血酸含量是可行的.

十.分光光度法

1.原理:

维生素C在空气中尤其在碱性介质中极易被氧化成脱氢抗坏血酸,pH>5,脱氢抗坏血酸内环开裂,形成二酮古洛糖酸。脱氢抗坏血酸,二酮古洛糖酸均能和2,4-二硝基苯肼生成可溶于硫酸的脎

脎在500nm波长有最大吸收

根据样品溶液吸光度,由工作曲线查出VC的浓度,即可求出VC的含量

十一库仑滴定法

1.原理:库仑滴定法属于恒电流库仑分析。

是在特定的电解液中,以电极反应产物为滴定剂(电生滴定剂,相当于化学滴定中的标准浓液)与待测物质定量作用,借助指示剂或电位法确定滴定终点。

2.基本依据--法拉第电解定律:电解时,电极上发身化学反应的物质质量与通过电解池的电量Q成正比

即:m=MQ/zF=MIt/zF

3..化学反应:阴极反应:2H+2e-=H2阳极反应:2I-=I2+2e-

4.终点指示:多种方法

(1)化学指示剂--I2

(2)电位法

(3)双铂极电流指示法

5.计算式:Wvc=MvcQ/zFm样式中:F---法拉第常数(96487C)

Z---电极反应中转移的电子数注意:使电解效率100%

6.优点:

1)无需标准化的试剂溶液,免去了大量的标准物质的准备工作(配制,标定)

2)只需要一个高质量的供电器,计时器,小铂丝电极,且易于实现自动化控制

3)若电流维持一个定值,可大大缩短了电解时间

4)电量容易控制及准确测量;方法灵敏度,准确度较高

5)滴定剂来自电解时的电极产物,可实现容量分析中不易实现的滴定过程,如Cu+,Br2,Cl2产生后立即与待测物反应。

7.缺点(难点):

要求电解过程没有副反应和漏电现象,即使电解电极上只进行生成滴定剂的反应,且电流的效率是100%

8.注:电流效率=i样÷i总=i样÷(i样+i容+i杂)

因为:实际电解过程中存在影响电流效率的因素,如,杂质,溶剂,电极自身在电极上的反应等

十二紫外快速测定法

原理

维生素C的2,6—二氯酚靛酚容量法,操作步骤较繁琐,而且受其它还原性物质、样品色素颜色和测定时间的影响。紫外快速测定法,是根据维生素C具有对紫外产生吸收和对碱不稳定的特性,于243nm处测定样品液与碱处理样品液两者消光值之差,通过查标准曲线,即可计算样品中维生素C的含量。

十三光电比浊法的原理

原理

在酸性介质中,抗坏铁酸与亚硒酸(H2SeO3)能定量地进行氧化还原反应.1mol的抗铁酸能将2mol的亚硒酸还原成硒.在一定条件下,生成的元素硒在溶液中形成稳定的悬浊液.当抗铁酸的浓度在0-4mg/25-50ml的范围内,该溶液生成的浊度与抗坏铁酸的含量成正比.将试液置分光光度计上测其浊度可以定量地测定抗坏铁酸.

十四荧光分析法的原理

原理

用酸洗活性炭将抗坏铁酸氧化为顺式脱氢抗坏铁酸,然后与邻苯二胺缩合成一种荧光性化合物.样品中其它荧光杂质的干扰可以通过向氧化后的样品中加入硼酸,使脱氢抗坏铁酸形成硼酸脱氢抗坏铁酸的络合物,它不与邻二苯胺生成荧光化合物.这样可以测定其它荧光杂质的空白荧光强度而加以校正

十五原子吸收间接测定法

原理

这是最近报导的一种Vc测定法,其原理是在酸性介质中还原型Vc可将Cu2+定量地还原为Cu+并与SCN—反应生成CuSCN沉淀,在高速离心机下有效地分离出沉淀,小心洗涤后再经浓硝酸溶解,用原子吸收法测定铜含量,即可推知样品中维生素C的含量。该法实验仪器较昂贵,主要问题是操作过程中反应完全与否,沉淀物洗涤、离心反复多次,极容易带来误差。该法优点是能不受果蔬自身颜色的干扰,有一定的发展前景。根据试验,发现此法结果偏低,还有待于进一步优化改善。

十六.金纳米微粒分光光度法测定维生素C的方法

本发明公开了一种用金纳米微粒分光光度法测定维生素C的方法。于5mL比色管中,依次加入0.1-2.0mL浓度为95.64μg/mL的HAuCl↓[4]溶液,0.02-0.50mL浓度为1%的柠檬酸三钠溶液,再加入0.001-2.0mL浓度为0.38mg/mL的维生素C溶液,混匀,加二次蒸馏水定容至刻度,再充分混匀,在分光光度计上,于520nm处测定吸收值,同时作空白试验。本发明测定方法简单、快捷,所用仪器价廉,试剂易得

十七L-半胱氨酸修饰电极测定维生素C的方法

研究了L-半胱氨酸修饰电极的制备方法和其电化学行为,并用于维生素C的测定,发现该电极对VC有明显的电催化作用,在pH=10.0的NH4Cl-NH3·H2O缓冲溶液中,VC在L-半胱氨酸修饰电极上产生一灵敏的氧化峰,峰电流与VC的浓度在1.0×10-3~1.0×10-6mol/L的范围内呈良好的线形关系,相关系数为0.9962,其最低检测限可达1.0×10-6mol/L,与紫外光谱法测定的结果一致。

测定维生素C有多种方法,包括采用I2或二氯靛酚(DPI)进行氧化还原滴定。一般来说,滴定法是一种快速、简便、准确的技术,它通过滴定剂和被滴定物质的等当量反应,精确测定被测物质的含量。DPI对于维生素C具有良好的选择性,是一种理想的氧化剂。

十八梅特勒-托利多仪器法

传统的滴定法是手工滴定,根据指示剂颜色的变化确定终点,通过测量滴定剂的消耗量,计算被测物质的含量。手工滴定有很多不足:手工控制误差较大,计算复杂,针对不同的反应需要特殊指示剂。梅特勒-托利多的自动电位滴定仪解决了这一问题,通过测量滴定反应中电位的变化确定终点,全自动操作、计算,测量快速,结果准确。梅特勒-托利多的滴定仪配有记忆卡软件包,存储有成熟滴定方法,可方便快速解决实际应用问题,并且稍作改动就能作为新的测定的实验方法。

除此之外,还有双光束剩余染料差减比色法,2_6_二氯靛酚钠动力学分光光度法、聚中性红修饰电极方法、示波溴量法、流动注射化学发光抑制法、磷钼钨杂多酸作显色剂快速检测方法、溶氧测定装置测定水果蔬菜中抗坏血酸含量的方法等。在此不做介绍。

Ⅵ 怎样测定蔬菜中的维生素C

1.滴定法测定维生素C
1.1测定原理
2,6一二氯靛酚法和碘量法是较常见的滴定测定维生素C的方法。还原型抗坏血酸还原染料2,6一二氯靛酚,该染料在酸性中呈红色,被还原后红色消失。还原型抗坏血酸还原2,6一二氯靛酚后,本身被氧化成脱氢抗坏血酸。在没有杂质干扰时,一定量的样品提取液还原标准2, 6-二氯靛酚的量与样品中所含维生素C的量成正比。
碘量法的原理:维生素C包括氧化型、还原型和二酮古乐糖酸三种,当用碘滴定维生素C时,所滴定的碘被维生素C还原为碘离子,随着滴定过程中维生素C全被氧化,所滴入的碘将以碘分子形式出现。碘分子可以使含指示剂(淀粉)的溶液产生蓝色,即为滴定终点。
1.2测定操作
2,6一二氯靛酚法:取适量的样品可食部,加入100 mL 2%草酸溶液,制成匀浆。取同一样品匀浆10g,加入1%草酸溶液20 mL,摇匀,用滤纸过滤,取5mL过滤液于锥形瓶中,用2,6一二氯靛酚钠盐溶液滴定(1 mL≈0.02 mgVitC),以淡红色存在30 s内不褪色为滴定终点。记录2,6-二氯酚靛酚钠盐溶液的消耗量,根据结果计算出样品中维生素C含量(mg/100 g)。
碘量法:将果蔬洗净,用纱布拭干其外部所附着的水分,若样品清洁可以不必洗。样品可以先纵切为4~8等份,分别称取20g可是用食部分,置于研钵中加入2% Hcl 15~10ml,研磨至浆状,移于 100ml 容量瓶中,用2% HCl 加至刻度线处,混匀,过滤,记录滤液总体积。样品液的测定: 在50ml 烧杯中,用移液管注入10% KI 溶液0.5ml,0.5% 的淀粉溶液 2ml,样品液 5ml,蒸馏水 2.5ml,用0.001N KIO3 液滴定,要一滴滴加入,并时时摇动烧杯,至微蓝色不褪色为终点( 一分钟不褪为止) 。记录所用 KIO3 液毫升数,计算维生素C含量。
1.3测定方法评价
2,6-二氯酚靛酚滴定法具有简便、快速、比较准确等优点,适用于许多不同类型样品的分析。缺点是不能直接测定样品中的脱氢抗坏血酸及结合抗坏血酸的含量,易受其他还原物质的干扰,如果样品中含有色素类物质,将给滴定终点的观察造成困难。碘酸钾滴定法较便宜,使用碘酸钾滴定法测定蔬菜中维生素C含量较为简便易行,而2,6一二氯靛酚法相对复杂。总的来说,滴定法操作简便、快速,无须特殊仪器,但在测定深色样品时,准确度和精确度欠佳。
2.荧光法测定维生素C
2.1测定原理
Deutsch和Weeks曾经报道过一种检测维生素C的荧光分析法(OPDA),并被指定为维生素C的经典荧光分析法。在该方法中,维生素C先被活性炭(Norit)氧化为脱氢抗坏血酸(DHAA),DHAA再与荧光底物邻苯二胺(OPDA)结合生成荧光产物,通过对该荧光产物的检测实现对维生素C的定量分析。孙振艳等[1]提出了一种新的测定维生素C的荧光分析方法。基于维生素C被Cu2+氧化为DHAA,DHAA进一步与苯甲酸及十六烷基三甲基溴化铵产生荧光协同增敏作用,通过对体系荧光强度的测定进行维生素C的定量分析。
2.2测定操作
荧光分析法(OPDA)的测定方法:称取一定量样品,研磨后用水浸泡,取清液加入适量1%草酸溶液,振摇约3min,加入0.2g已处理好的活性炭再充分振摇约3min后过滤,滤液加于两个25mL比色管再加入5.0mL缓冲溶液,,其中一管加入2.0mL硼酸溶液(即空白)摇匀,放置15min后,两管均加入邻苯二胺溶液10mL,避光放置30min待测。样品荧光强度减去空白荧光强度值即为样品相对荧光强度值。
孙振艳等的荧光分析法:在25 mL比色管中依次加入0. 6 mL CuSO4溶液,2. 0 mL十六烷基三甲基溴化铵溶液,2. 0 mL苯甲酸溶液,一定体积的维生素C标准溶液,,5. 0 mLNaOH-邻苯二甲酸氢钾缓冲溶液,用蒸馏水定容,摇匀。在35℃恒温水浴中加热30 min,将溶液流水冷却至室温,激发波长为308 nm,在发射波长408nm处,测量荧光强度F,以不含维生素C的试剂空白为F0,计算ΔF=F-F。
2.3测定方法评价
荧光分析法测定维生素C具有操作简单,精密度高,检出限低等优点,该法可以应用于水果、蔬菜和药物中维生素C的检测,适于推广。
3.光度分析法测定维生素C
3. 1测定原理
2,4-二硝基苯肼法和钼蓝比色法是常见测定维生素C的一种光度分析法。2,4-二硝基苯肼法的原理是总维生素C包括还原型、脱氢型和二酮古乐糖酸,样品中还原型抗坏血酸经活性炭氧化为脱氢抗坏血酸,再与2,4-二硝基苯肼作用生成红色脎,脎的含量与总抗坏血酸含量成正比,进行比色测定。钼蓝比色法是测定果蔬中还原型维生素C含量的一种常用方法,因偏磷酸和钼酸铵反应生成的磷钼酸铵经还原型的维生素C还原后生成亮蓝色的络合物,通过分光比色可以测定样品中还原型维生素C的含量。
3.2测定操作
2,4-二硝基苯肼法:取适量的样品可食部,加入100 mL 2%草酸溶液,制成匀浆。取匀浆20 g (含1~2 mg抗坏血酸)置入100 mL容量瓶中,用1%草酸溶液定容,混匀后过滤。取25 mL过滤液放入有2 g活性炭的25 mL比色管中,振摇1 min,过滤。然后取10 mL此氧化提取液,加入10 mL 2%硫脲溶液,混匀。按照GB12392-90中呈色反应方法,用分光光度计进行比色,根据结果计算出样品中抗坏血酸含量。按下式计算样品中Vc的含量:X=c·Vm×F×1001000。
X—样品中总抗坏血酸含量,mg/100g;
c—由标准曲线查得或回归方程算得“样品氧化液”总抗坏血酸的浓度,μg/mL; V—试样用1%草酸溶液定容的体积,mL; F—样品氧化处理过程中稀释倍数; m—试样质量,g。
钼蓝比色法:准确称取 100 g 样品, 加入草酸-EDTA 溶液, 经捣碎后移入 100 mL 容量瓶,定容,过滤,吸取 2 mL 上清液于 50 mL 容量瓶中,加入 1 mL 的偏磷酸-醋酸溶液,5%的硫酸 2.0 mL,摇匀,加入 4 mL 钼酸铵,以去离子水定容至 50 mL,20 min 后测定吸光度。
3.3测定方法评价
钼蓝比色法测定果蔬中还原型维生素C含量数据稳定性、准确性较好,是一种快速、准确、灵敏度高的测定方法,而且不受样液颜色的影响。2,4-二硝基苯肼比色法测定总VitC (还原型和氧化型),特异性较好,但操作复杂,是我国食品中VitC测定的标准方法,此方法适用于蔬菜、水果及其制品中总抗坏血酸的测定。
4.高效液相色谱法
4.1测定原理
高效液相色谱法是近年来发展起来的一种测定维生素 C 含量的方法,测定维生素 C 含量通常采用 C18柱或 C8柱,由于维生素 C 对紫外光有吸收,故检测器常用紫外检测器。
4.2测定操作
称取维生素C标准样品0.1000 g.转移至100 ml容量瓶中,用双蒸水定容,得到1.0mg·ml-1的维生素C标准溶液。参考Nisperos-Carriedo等的方法。准确称取果肉1.00 g,用5 ml 0.2%偏磷酸冰浴研磨, 10000 g离心15 min,残渣加入4 ml 0.2%偏磷酸再提取,合并上清液,定容至10 ml,经0.45μm滤膜过滤后待测。每个样品重复5次。维生素C在240 nm波长时有最大吸收峰,故以240 nm作为检测波长。以0.2%偏磷酸为流动相。分别吸取标准溶液1 ml、2 ml、4 ml、6 ml、8m,l各自定容至10 m,l从中分别吸取10.0μl进样分析,以峰面积(mv)为纵坐标,标样浓度(mg·ml-1)为横坐标,绘制标准溶液曲线,计算线性回归方程的回归系数和截距。将样品溶液分别进样10.0μl进行液相色谱分析,测定维生素C的色谱峰面积,代入标准曲线计算出维生素C含量。
4.3测定方法评价
高效液相色谱法具有高效、快速、稳定、结构准确、操作简便等特点。该法分离时间短,对结构不稳定的维生素C尤为适合,还特别适用于颜色较深的提取液样品的测定,成为近年来较受欢迎的维生素C测定方法。缺点是所用仪器较为昂贵。

Ⅶ 维生素C的滴定方法

维生素C测定就是对维生素C的测定。在测定维生素C的国标方法中,荧光法为测定食物中维生素C含量的第一标准方法,2、4-二硝基苯肼法作为第二法。
1 适用范围
本标准适用于果品、蔬菜及其加工制品中还原型抗坏血酸的测定(不含二价铁、二价
锡、一价铜、二氧化硫、亚硫酸盐或硫代硫酸盐),不适用于深色样品。
2 测定原理
染料2,6-二氯靛酚的颜色反应表现两种特性,一是取决于其氧化还原状态,氧化态
为深蓝色,还原态变为无色;二是受其介质的酸度影响,在碱性溶液中呈深蓝色,在酸性介
质中呈浅红色。
用蓝色的碱性染料标准溶液,对含维生素 C的酸性浸出液进行氧化还原滴定,染料被
还原为无色,当到达滴定终点时,多余的染料在酸性介质中则表现为浅红色,由染料用量
计算样品中还原型抗坏血酸的含量。
3 仪器设备
a. 高速组织捣碎机:8000~12000r/min。
b. 分析天平。
c. 滴定管:25ml、10ml。
d. 容量瓶:100ml。
e. 锥形瓶:100ml、50ml。
f. 吸管:10ml、5ml、2ml、1ml。
g. 烧杯:250ml、50ml。
h. 漏斗。
4 试剂(凡未加说明者均为分析纯)
4.1 浸提剂
4.1.1 偏磷酸:2%溶液(W/V)* ,
4.1.2 草酸:2%溶液(W/V)。
4.2 抗坏血酸标准溶液(1mg/ml):称取 100mg(准确至 0.1mg)抗坏血酸**,溶于浸提剂
中并稀至100ml。现配现用。
——————————
* 偏磷酸不稳定,切勿加热。
** 一般抗坏血酸纯度为99.5%以上,可不标定。如试剂发黄,则弃去不用。若要检查其
纯度,可按附录B方法标定。
4.3 2,6-二氯靛酚(2,6-二氯靛酚吲哚酚钠盐)溶液:称取碳酸氢钠 52mg溶解在200ml
热蒸馏水中,然后称取 2,6-二氯靛酚 50mg溶解在上述碳酸氢钠溶液中。冷却定容至
250ml,过滤至棕色瓶内,保存在冰箱中。每次使用前,用标准抗坏血酸标定其滴定度。即
吸取1ml抗坏血酸标准溶液于50ml锥形瓶中,加入10ml浸提剂,摇匀,用2 ,6-二氯靛酚溶
液滴定至溶液呈粉红色15s不褪色为止。同时,另取 10ml浸提剂做空白试验。
滴定度按式(1)计算:
C·V
滴定度 T(mg/ml)=—————………………………… (1)
V1-V2
式中: T——每毫升2,6-二氯靛酚溶液相当于抗坏血酸的毫克数;
C——抗坏血酸的浓度,mg/ml;
V——吸取抗坏血酸的体积, ml;
V1——滴定抗坏血酸溶液所用 2,6-二氯靛酚溶液的体积,ml;
V2——滴定空白所用2,6-二氯靛酚溶液的体积,ml。
4.4 白陶土(或称高岭土),对维生素C无吸附性。
5 测定步骤
5.1 样液制备:称取具有代表性样品的可食部分100g,放入组织捣碎机中,加 100ml浸
提剂,迅速捣成匀浆。称 10~40g浆状样品,用浸提剂将样品移入 100ml容量瓶,并稀释
至刻度,摇匀过滤。若滤液有色,可按每克样品加 0.4g白陶土脱色后再过滤。
5.2 滴定:吸取10ml滤液放入50ml锥形瓶中,用已标定过的 2,6-二氯靛酚溶液滴定,
直至溶液呈粉红色 15s不褪色为止。同时做空白试验。
6 结果计算
6.1 计算公式:
维生素 C按式(2)计算:
(V-V0)·T·A
维生素C(mg/100g)=————————-×100 …………………(2)
W
式中: V——滴定样液时消耗染料溶液的体积,ml;
V0——滴定空白时消耗染料溶液的体积,ml;
T——2,6-二氯靛酚染料滴定度,mg/ml;
A——稀释倍数;
W——样品重量,g。
6.2 平行测定的结果,用算术平均值表示,取三位有效数字,含量低的保留小数点后两
位数字。
6.3 平行测定结果的相对相差,在维生素C含量大于 20mg/100g时,不得超过 2%,小于
20mg/100g时,不得超过 5%。
附 录 A
二甲苯-二氯靛酚比色法
(补充法)
A.1 适用范围
测定深色样品中还原型抗坏血酸。
A.2 测定原理
用定量的 2,6-二氯靛酚染料与试样中的维生素 C进行氧化还原反应,多余的染料
在酸性环境中呈红色,用二甲苯萃取后比色,在一定范围内,吸光度与染料浓度呈线性相
关,收剩余染料浓度用差减法计算维生素 C含量。
A.3 仪器设备
A.3.1 分光光度计或比色计。
A.3.2 具塞试管:50ml。
A.4 试剂(皆为分析纯)
A.4.1 偏磷酸:2%溶液(W/V)。
A.4.2 乙酸钠缓冲溶液(pH4.0):500ml50%(W/V)的乙酸钠溶液与 500ml冰乙酸混合。
A.4.3 2,6-二氯靛酚溶液:参照 4.3条。
A.4.4 二甲苯。
A.5 测定步骤
A.5.1 标准曲线的绘制:用6只50ml具塞试管加入5ml2%偏磷酸和5mlpH4.0的乙酸钠缓
冲液,然后依次加入0.0 ,0.1,0.3,0.6,0.9,1.2及 1.5ml 2,6-二氯靛酚溶液,用
力摇动5s,再向各试管中加入10ml二甲苯,再激烈摇动20s,静置分层后与试样管同时比色
(无染料的试液作空白),以吸光度为纵坐标,2,6-二氯靛酚的毫升数为横坐标绘制标
准曲线。
A.5.2 吸取5ml2%偏磷酸样品浸出液(参照5.1条)于50ml具塞试管中,加5mlpH4.0的
乙酸钠缓冲液和2ml染料溶液,激烈摇动5s,立即加入10ml二甲苯,再激烈摇动20s,待静
置分层后,从二甲苯层中小心吸取一份,放入1cm比色杯中于500nm波长下进行比色。记
录吸光度A,在标准曲线上查出二甲苯层中 2,6-二氯靛酚的毫升数。整个操作应在30
min内完成。
A.6 计算公式
(2-V)·T·A
维生素 C(mg/100g)=——————×100
W
式中: 2——所用 2,6-二氯靛酚染料的体积,ml ;
V——查得 2,6-二氯靛酚溶液的体积,ml;
A——稀释倍数;
T——染料滴定度,mg/ml;
W——样品重量,g。
附 录 B
抗坏血酸纯度检验法
(补充件)
B.1 称取100mg(准确至0.1mg)抗坏血酸待测样品,用 2%偏磷酸或 2%草酸溶液溶解稀
释至 100ml。
B.2 吸取抗坏血酸溶液1ml于盛 10ml 2%偏磷酸或2%草酸溶液的锥形瓶中,加入6%碘
化钾溶液 0.5ml和1%淀粉溶液五滴,摇匀。用 1.67×10**-4M碘酸钾标准溶液滴定,
终点为极淡蓝色。
B.3 计算公式
B.3.1 抗坏血酸浓度按式(B1)计算:
V1×0.088
抗坏血酸浓度=—————— ……………………………… (B1)
V2
式中: V1——滴定时消耗1.67×10**-4 M碘酸钾标准溶液的体积,ml;
V2——所取抗坏血酸溶液的体积,ml;
0.088——1 ml 1.67×10**-4 M碘酸钾溶液相当于抗坏血酸的重量,mg;
B.3.2 抗坏血酸纯度(%)按式(B2)计算:
C·V
抗坏血酸纯度(%)=———×100 ……………………………(B2)
W
式中: C——所标定抗坏血酸的浓度,mg/ml;
V——抗坏血酸溶液总体积,ml;
W——抗坏血酸重量,mg。

Ⅷ 维生素C的含量测定方法为( )。

【答案】B
【答案解析】本组题考查要点是"药物的含量测定方法"。铈量法可直接测定某些金属的低价化合物及有机还原性物质。同时铈量法还不易受制剂中淀粉、糖类的干扰,因此特别适合片剂、糖浆剂等制剂的测定。《中国药典》收载的硫酸亚铁片、葡萄糖酸亚铁及其制剂、富马酸亚铁及其制剂、硝苯地平等药物都是采用铈量法测定。《中国药典》采用酸碱滴定法测定阿司匹林含量;维生素C具有还原性,《中国药典》采用碘量法测定维生素C的含量。

Ⅸ 怎样测定维生素C的含量

测定维生素C有多种方法,包括采用I2或二氯靛酚 (DPI)进行氧化还原滴定。一般来说,滴定法是一种快速、 简便、准确的技术,它通过滴定剂和被滴定物质的等当量反 应,精确测定被测物质的含量。DPI对于维生素C具有良好的选择性,是一种理想的氧化剂。
传统的滴定法是手工滴定,根据指示剂颜色的变化确定 终点,通过测量滴定剂的消耗量,计算被测物质的含量。手 工滴定有很多不足:手工控制误差较大,计算复杂,针对不 同的反应要特殊指示剂。梅特勒-托利多的自动电位滴定仪 解决了这一问题,通过测量滴定反应中电位的变化确定终 点,全自动操作、计算,测量快速,结果准确。梅特勒-托利 多的滴定仪配有记忆卡软件包,存储有成熟滴定方法,可方 便快速解决实际应用问题,并且稍作改动就能作为新的测定
的实验方法。

阅读全文

与有哪些测定维c含量的方法相关的资料

热点内容
篮球比赛研究方法 浏览:442
如何微信加人方法如下 浏览:779
一致性评价的研究方法 浏览:55
电脑ps上色方法 浏览:784
弯腰有什么方法视频 浏览:605
如何提升做数独的方法 浏览:295
做小苏打牙膏最简单的方法 浏览:373
联想笔记本的使用方法 浏览:554
手机网速慢解决方法图解 浏览:559
代扣劳务报酬个税计算方法 浏览:855
室内种植蔬菜方法大全 浏览:424
拉大蒜器盖的安装方法 浏览:551
光滑墙砖安装方法 浏览:737
latoja使用方法视频 浏览:987
天津治疗脑血栓最新方法 浏览:20
辣椒红色素使用方法 浏览:822
印刷机少锡的原因及解决方法 浏览:810
如何挑选海参有几种方法 浏览:329
鼻咽通气管的使用方法 浏览:243
腿部记忆训练方法 浏览:975