导航:首页 > 知识科普 > 什么是大数据风险控制有哪些具体的方法

什么是大数据风险控制有哪些具体的方法

发布时间:2023-04-23 04:43:35

㈠ 为什么要使用大数据风控大数据风控有什么用呢

风控即风险控制,大数据风控是指通过运用大量多重数据构建模型的方法对风险进行分郑枝析,以给客户端进行风险预警和风险控制带数。

传统的风控技术,多由各机构自己的风控团队,以人工的方式进行经验控制(因为每个团队不同,风控质量参差不齐,最关键人工的无限制是数据处理能力弱,数据喊行敏中的异常分析能力差);而大数据风控是借助互联网海量数据,对数据进行多维度,智能化,标准化处理,数据处理结果越来越精准。

(举个简单的例子,你去银行贷款,传统的人控,只去看下最近三年的贷款和银行的流水记录,但大数据风控,可以调查你最近10年的记录,再分析你有没骗贷的可能。)

㈡ 大数据风控是什么

大数据风控即大数据风险控制,是指通过运用行告伍大数据构建模型的方法对借款人进行风险控制和风险提示。传统的风控技术,档或多由各机构自己的风控团队,以人工的方式进行经验控制友态。

㈢ 大数据风控到底能不能拯救网络借贷

大数据风控到底能不能拯救网络借贷

自2007年被引入中国,P2P行业在国内已经走过了八个年头。2013年,P2P行业正式进入爆发式发展阶段。与此同时,行业开始出现大面积的风险事件。据网贷之家数据显示,截止2015年9月24日,P2P行业问题平台数量累计已达653家。另外,有数据披露当前P2P行业的坏账率正持续走高,一度达到了5%。风险事件的屡见不鲜使得P2P行业在发展的同时也饱受批评,而最为核心的风控更是成为整个行业悬而未解的难题。P2P网络借贷起源于英美,是一种基于互联网的陌生人借贷模式,后被引入中国。最原始的P2P模式被称为纯线上模式,贷前、贷中、贷后及相关过程中的一切尽调、审核等都在线上完成。但这种模式得以成功的前提是拥有一套完善的征信体系作为社会基础。众所周知,英美国家的民间征信体系非常健全,民间更是不乏成熟的信用评级机构,为其P2P行业提供了发展的沃土。但是国内不论是社会信用环境还是民间征信体系的建设都与英美天差地别,因而P2P被引入中国之后,为了适应国内市场,便由原始的纯线上模式演变为线上线下相结合的模式。由于线上+线下模式的特殊性,导致国内P2P行业难以效仿西方国家以数据分析来建立风险模型,而是开发出了线上融资、线下风控的风控方式。当前国内的P2P行业风险控制主要在贷前及贷后两个阶段上强化。1、贷前:信用审核贷前的信用审核主要依靠线下完成,需要线下的风控人员或信贷员进行实地走访,对借款人的实际生活、经营环境进行调查,清晰掌握其收入、负债等资产情况,以此预测出借款人的还款意愿及还款能力。P2P虽然基于互联网,但就目前来看,贷前尽调上使用的方法与传统的小贷公司脊悄无异。这种模式在中国不完善的征信环境中得以发展成熟,尽调数据也具备一定参考价值。但其劣势也显而易见,一是增加了P2P平台的人力和财力成本;二是对借款人的评估和预判往往依赖于风控人员的主观判断,因此从某种意义上来说,该借款项目风险是否把控得当与工作人员的经验多少有一定关系。2、贷后:担保增信对于P2P平台而言,一方面由于自身技术能力有限;另一方面则受限于严重的信息壁垒,因此在批复放款之后,难以监控借款人的真实经营状况及借款款项的具体流向,导致项目不良率居高不下。为了最大程度地降低风险,99%的P2P平台都会强化贷后风险管理手段,亦即在最后阶段引入担保机构进行风险共担。担保机构会承诺对该笔借款项目进行全额本息担保,一旦极端风险事件爆发,将由担保机构对投资人进行本息偿付,随后再进行逾期、坏账项目的追偿及催收等后续工作。由于当前P2P行业普遍采用的风控模式均来源于传统手段,过于依赖人工,难以有效规避从业人员在信审过程中可能出现的道德风险和诈骗风险。因此,P2P平台虽然在高呼创新风控,但实际上并没有解决核心问题。换言之,风控难题依然是当前行业发展过程中一道难以跨越的坎。什么是大数据风控随着行业的发展,风险积聚问题的严峻愈发突出,越来越多的人开始呼吁行业摒弃以个人经验进行预判的传统风控模式,而是应该深入挖掘数据建模的可行性,通过完善数据征信来解决风控难题。根据网络的词条解释:大数据风控即大数据风险控制,是指通过运用大数据构建模型的方法对借款人进行风险控制和风险提示。迄今为止,大数据风控在互联网金融领域的经典案例非阿里小贷莫属橘举,依托于阿里巴巴庞大的数据库,阿里小贷通过云计算来对用户数据进行分析处理,最终产生用户的信用数据。阿里数据库的数据种类之多、容量之大,使得阿里小贷能够通过现有数据来对用户违约概率进行较为精准的预测,迅速确定用户授信,真正实现信贷扁平化。P2P能不能实现大数据风控互联网金融领域赫赫有名的“校长”曾经明确提出“大数据风控对P2P行业无效”的观点,原因简要概括如下:一是经济形势的不可预测性,一旦经济形势下行压力过大,金融机构也无完卵,那么风险管理在系统性风险面前毫无意义。二是P2P行业还难以达到大数据的逻辑标准——足够大的样本量,换言之,覆盖的人群远远达不到样本容量要求的P2P行业拿什么来做大数据?因此,很长一段时间内大数据虽然概念火热,基本上很少有P2P平台樱伍渣能够真正运用。近日果树财富高调宣布引进云风控技术来进行借款人资信审核的新闻,将大数据风控的话题再一次摆到了台面上,而关于大数据风控在P2P行业到底可不可行的讨论又甚嚣尘上了。笔者的观点是:P2P做大数据风控,虽然无法照搬电商模式,但在适当范围内可以尝试。假设P2P平台能够采集到一定基数的真实用户数据,将可以建立一定容量的数据库,以此为核心建立数据模型。第一,信用评分模型。平台可以通过评估用户的历史收入、资产、职业、年龄等信息,来估算出借款用户的信用风险分数,以此预测其违约风险。但这种模型的局限性在于历史数据的时效性及参考性十分有限,因而需要平台对用户数据变量进行定期监测及更新。第二,违约概率模型。与传统的人工经验预判概率相比,P2P平台可以通过积累用户的历史数据,从中提炼出借款用户的违约概率。综上,不可否认,大数据在P2P行业风控中的应用不仅前景可期,同时也是具备一定可行意义的。一方面,大数据能够帮助P2P平台摆脱高成本的人工信审现状;另一方面,数据模型的统一化、标准化能够改善当前凭个人经验预判项目风险的风控现状。从这个角度来看,短期之内大数据风控对于P2P平台的意义在于提高风控水平、降低风控成本、建立高效风控机制。这也是前文提到的果树财富引入云风控技术的原因之一,无非是为了低成本引入用户数据报告,辅助平台核验用户资信和违约风险。

以上是小编为大家分享的关于大数据风控到底能不能拯救网络借贷的相关内容,更多信息可以关注环球青藤分享更多干货

㈣ 相比银行传统风控,大数据风控对比传统风控有优势吗

相比银行传统风控,大数据风控对比传统风控有优势吗?

相对于传统风控,大数据风控在建模原理和方法论上并无本质区别,只不过是通过互联网的红利,采集到更多维的数据变量,通过分析数据的相关性来加强或者替代传统的强因果关系。
建模原理和方法论上并无本质区别
大数据风控即大数据风险控制,是指通过运用大数据构建模型的方法对借款人进行风险控制和风险提示。

相雹谈比传统风控,大数据风控究竟有何优势

以往传统的风控需要N个工作日,而且经常是线下调查+调取央行个人征信记录的方式,耗时耗力。大数据风控基于线上大量的数据资源和强大的数据挖掘及分析能力,与传统风控相比,具有数据覆盖维度更广,处理速度更快的优势。

大数据风控可以取代传统风控系统吗?

可以肯定回答,绝对不会被替代。
现在审核中,大数据只能算作是传统风控的一个参考点或者说是辅助作用。而且数据资源也是在传统风控的审核过的业务基础上采集的。
单纯借助大数据风控,而忽略传统风控系统,显然是不靠谱也是不可能的。
最好是可以以大数据风控为辅助手段,选择具有风险引擎和规则引擎的"双引擎风控"系统,不仅有自主学习能力,POC跑分也远远高于传统的规则单引擎。

大数据风控与传统风控有什么不同?, 信贷大数据风控系统与传统风控系统区别

传统的风控系统比较简单, 一套简单的IT系统结合线上线下征信,征信数据来源局限,原理简单,风险较大。
相对于大数据风控系统来说,由于大数据征信评分原因,IT系统相对完善,数据来源来源征信机构及互联网各种平台相关数据。
大体有四部分功能:1、评分建模,风控部分;
2、IT系统:业务系统、审批系统、征信系统、催收系统、账务系统;
3、决策配置工具,即信dai决策引擎;
4、征信大茄肆搭数据的整合模块。
大数据风控系统优势是大数据驱动,兼容手动、自动审批、决策、dai后管理。
鉴于大数据风控系统大大降低了风险,目前信dai行业,特别是小微金融机构大数据风控应用趋于普遍。神州融首推出了大数据风控平台、融360等也相继推出了自己的风控系统。

阿里巴巴的风控相比较传统银行的风控有何区别?会更有优势吗

您好,专业金融风控平台 “红途风控汇”为您解答:

  1. 个人以为,阿里的风控相比传统银行的风控是有差距的。阿里作为一家互联网公司,相关很多法律法规不完善,也就存在很多空子可以钻。而传统银行作为国家调控的主要手段,它的风控显然更成熟也更具安全性。

  2. 目前来看,阿里的金融产品还是比较稳健的,因为其收益率并没有超越红线,相比p2p的高收益而言,相对安全。

传统风控手段(经验)会被星桥数据的金融大数据风控替代吗?

应 该 说 是 各 有 千 秋 , 星 桥 数 据 的 金 融 大 数 据 数 据 信 息 全 面 , 为 信 贷 类 企 业 跟 个 人颤拿 提 供 黑 名 单 查 询 、 身 份 验 证 、 涵 盖 网 上 消 费 痕 迹 、 银 行 流 水 、 社 保 记 录 、 交 税 记 录 等 查 询 、 各 类 反 欺 诈 规 则 等 各 类 大 数 据 金 融 一 体 化 服 务 , 可 以 说 是 传 统 征 信 的 一 个 有 力 补 充 。

传统风控手段会被大数据风控替代吗?还是大数据只能用来辅助

应该是不会被取代的,或者说短期内不会被取代。二者处于不同的维度,不发生取代关系
有关风控,可以网络 红途 风控交流学习。

中农信贷的大数据风控与传统风控有什么不同?有人专门了解过吗?

中农信贷是用现代科技与人工结合的办理业务,不同之处在于将现代科技技术运用到业务中去了。

大数据风控靠谱吗?

大数据风控目前应该是前沿技术在金融领域的最成熟应用,相对于智能投顾、区块链等还在初期的金融科技应用,大数据风控目前已经在业界逐步普及,从浅橙科技这样的高科技企业,到交易规模比较大的网贷平台,再到做现金贷、消费金融的创业公司,都在通过大数据风控技术来控制贷款规模扩张中的风险。也就是说大数据风控是非常靠谱的。

㈤ 关于大数据相关的风险概述 关于大数据相关的风险概述内容是什么

1、数据建设风险操作,主要指在工程建设过程樱岁中,对关键系统、关键组件进行变更升级等操作。

2、数据管理风险操作,主要指数据生产运营过程中,对数据模型和数据实例进行定义调整敏坦、变更等造成数据异常的操作。

3、数据开放风险操作,主要指数据能力开放过程中,导致数据共享服务中断。

4、或者涉及违规对企业外部提供数据能力和API服务的操作。

5、数据应用风险操作,主要指数据应用服务提供过程中,对数据应用功能及服务内容进行上线变更、回溯更新,导致出现数据展示错误或者影响客户服务感知的操作。

6、数据安全风险操作,主要指在数据全生命周期中,导致对个人用户隐私信息。

7、或者企业运营管理机密信息出现数据泄露、数据丢失、数据篡改等安全问题脊拿睁的操作。

㈥ 相比银行传统风控,大数据风控对比传统风控有优势吗

有很大的优势,传统的信贷风控主要以人工审批为主,人工审核一般需要2-3周以上时间才能实现放款,效率低下,流程繁琐,互联网金融往往小胡厅脊额量大,放款速度加快至关重要。面对个人信用体系不完善、恶意骗贷、坏账和逾期、债务收回成本较高等诸裤渗多挑战,用伏谈自动化的数据智能风控体系来提升整个流程的效率是必然的发展趋势。

㈦ 大数据风控是什么

大数据风控的目标解放人工重复劳动,提高风控的效率和稳定性,及早识别出风险(时间就是金钱)。
大数据风控,基于数据表层的信息难于解放人工,往往是事后才发现风险,耐罩将其加黑名单、加策略后,其又通过换账号换设备换个外衣躲避,救火式的风控非常被动、低效、低质。基于数据深层次的特征分析才是风控的出路,欺诈的特征找到了,外衣再怎么变换也能自动识别出来。而图数据库技术是大数据关系分析的利携旁器,基于图谱的深层关联关系进行挖掘、推导、聚类等(比如找号、设备、IP、WIFI、通话记录、转账记录等形成的关联图谱),从而深度分析得出风控实体的特昌隐闹征。

㈧ 什么是大数据风控跟贷款怎么结合

所谓迅携大数据风控,就是用大数据的技术对风险因素进行管控,比如“险查查”,这个就是用很多风险数据来展现风险弯逗值,其中有多头借贷、社保公积金、运营商、学信网、人脸识别等技术,有了多个维度,不同数据,这样就可以尽可亩闹伏能减少信贷风险。

阅读全文

与什么是大数据风险控制有哪些具体的方法相关的资料

热点内容
麻辣烫制作方法步骤详解 浏览:752
什么方法可以让彩衣变亮 浏览:224
弱视最好的治疗方法 浏览:99
治疗胃病的土方法老胃病怎么治呢 浏览:26
简单黄豆酱的三种制作方法家庭 浏览:989
宫颈癌腺鳞癌治疗方法 浏览:158
真银的鉴别方法三个94个九点 浏览:852
突然阳痿治疗方法 浏览:766
如何制作磁场方法 浏览:875
注水旗杆的安装方法 浏览:212
直钩简化计算方法 浏览:921
烫皮的制作方法和配料视频 浏览:347
醉拳训练方法视频教程 浏览:89
果汁伴侣的使用方法 浏览:235
改写人生的方法和技巧 浏览:980
2014简单方法防小人 浏览:443
小米3流量设置在哪里设置方法 浏览:542
交通分布预测的常用方法 浏览:29
常用焊接成型的工艺方法及应用 浏览:59
交流电的计算方法视频 浏览:675