A. 函数求极限的方法总结
函数求极限的方法总结:
1、简单代值:利用函数的连续性求函数的极限。
如果是初等函数,且点在的定义区间内。计算该函数此时的极限,只要计算对应的函数值就可以了。
4、取大头:取大头法是在 x 趋近于∞时看x最高次幕前面做厅的系数, 因为分子分母扮旦要同时除以x的最高次幂, 有的项由于变为除以x的最高次幕后就变成0了。
B. 求函数极限的方法
函数的极限求解方法如下:
1、利用函数连续性。
limf(x)=f(a)x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)
2、恒等变形。
当分母等于零时,就弯顷不能将趋向值直接代入分母,可以通过几个小方法解决,因式分解,通过约野闹衫分使分母不会为零。若分母出现根号,可以配一个因子使根号去除。
以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
函数极限的定义
函数极限的定义是某一个函数中的某一个变量,此变量在变大(或者变小)的颂腔永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”,其有一个“不断地极为靠近A点的趋势”。
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
C. 函数极限的求法有哪几种方法
可以。
0/0型极限=1的例子,重要极限limsinx/x=1(x→0)
∞/∞型极限=1的例子,lim(x+1)/x=1(x→+∞)
注:可以运用罗比塔法则求0/0型、∞/∞型极限。
(3)函数极限求解方法有哪些扩展阅读:
极限此锋的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值
2、利用恒等变冲唯形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限
4、利用无穷小的性质求极限
5、利用等价无穷小替换求极限散扒培,可以将原式化简计算
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限
7、利用两个重要极限公式求极限
8、利用左、右极限求极限,(常是针对求在一个间断点处的极限值)
9、洛必达法则求极限
D. 求极限的方法有哪些
求极限的方法有以下几种:
1、谈液代入法:将变量代入函数中,得到一个数值,即为该点的函数值。
2、夹逼定理:通过夹逼定理找到一个上下界,并让上下界无限逼近目标点,从而得到极限值。
3、极限的四则运算法则:利用函数极含悉物限的四则运算法则求出极限值。
4、洛必达法则:将极限转化成两个函数的导数的极限,再进行计算。
函数极限存在的条件有以下两个:
1、函数趋于目标值:即当自变量趋于某一数值时,函数的取值趋近于某一固定的数值。
2、趋近方式唯一性:即函数在自变量趋近目标值的过程中,无论从哪个方向靠近,最终都将收敛到同一个值,否则该函数极限不存在。
E. 求极限的方法有哪些
一、利用极限四则运算法则求极限
函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则
lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
lim[f(x)・g(x)]=limf(x)・limg(x)=A・B
lim==(B≠0)
(类似的有数列极限四则运算法则)现以讨论函数为例。
对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有:
1.直接代入法
对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。
直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。
2.无穷大与无穷小的转换法
在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。
(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。
(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。
3.除以适当无穷大法
对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。
4.有理化法
适用于带根式的极限。
二、利用夹逼准则求极限
函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)
利用夹逼准则关键在于选用合适的不等式。
三、利用单调有界准则求极限
单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。
四、利用等价无穷小代换求极限
常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。
等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。
五、利用无穷小量性质求极限
在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。
六、利用两个重要极限求极限
使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。
七、利用洛必达法则求极限
如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。
F. 求函数极限的方法
求函数极限的方明枯法如下:
第一种:利用函数连续性:limf(x)=f(a)x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)。
第二种:恒等变形当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使乱绝分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)。
还会有其他的变形方式,需要通过练习来熟练。
1、通过已知极限特别是两个重要极限需要牢记。
2、采用洛必达法激陪洞则求极限洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。