1、同分母的分式加减法法则同分母的两个分式相加(减),分母不变,把分子相加(减).2、把几个异分母的分式分别化为与原来的分式相等的同分母的分式,叫做分式的通分.这个相同的分母叫做公分母.
说明:(1)通分的关键是找到几个分母的最简公分母,一般地,几个分式的公分母通常不止一个,但常选用最简公分母.
(2)通分时,如果分母中有多项式,要先把多项式因式分解,再找最简公分母,然后通分.
(3)通分依据的是分式的基本性质.3、确定最简公分母:几个分式的最简公分母是由各分母中系数的最小公倍数,相同字母的最高次幂及单独字母的幂的积所组成.
通分与约分既有区别又有联系:通分是把分式的分子、分母都乘以同一个不为零的整式,使分式的值不变.而约分是把分式的分子、分母都除以一个不为零的整式,使分式的值不变,可以看出,通分与约分是一个互逆的运算过程.4、异分母的分式加减法法则
异分母的两个分式相加(减),先通分,变为同分母的分式,再加(减).
.
例如:.5、异分母分式的加减运算的一般步骤
(1)对各分母进行因式分解;
(2)确定最简公分母,通分.
(3)按同分母的分式加减运算的法则进行运算.
(4)化简运算结果.6、分式的混合运算
与分数的混合运算相同,先算乘方,再算乘除,最后算加减,有括号的先算括号内的,且在运算过程中注意对某些分母结构特殊的分式,灵活处理.如:计算应将前两个先通分计算,然后再与第三个分式计算,这就简便得多,若一开始就通分,则计算很麻烦.二、重难点知识归纳
异分母的分式的加减法以及分式的混合运算是代数运算的基础知识,是重点也是难点,需要熟练掌握.三、例题讲解与剖析例1、通分.
.分析:
通分的关键是准确地找出几个待通分分式的最简公分母.解:
(1)∵最简公分母是3a2bc,
(2)∵最简公分母是(x-y)2(x+y),
例2、计算:
.分析:
(1)3a2bc=3ba2c=3cba2是同分母分式相加减,分母不变,把分子相加减,但应把各分子看成一个整体,用括号括起来,再相加减.
(2)因为y2-x2=-(x2-y2),所以只要用分式的符号法则,即可将第2个分式的分母和另两个分式的分母化为相同的.解:氦弗份煌莓号逢铜抚扩
例3、计算
分析:
(1)先算乘除,再算加减.(2)先算括号内的.(3)先算乘法,再算减法.
例4、(1)计算
(2)求能使分式的值为正整数的x的所有整数值.
(3)计算
(4)已知求A、B、C的值(A、B、C
B. 分式的简便运算
分式的运算
1、分式的乘除
分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.
用式子表示为:a/b·c/d=ac/bd
分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
用式子表示为:a/b÷c/d=a/b·d/c=ad/bc
.
理解这两个法则,要注意如下几点:
①
分式的乘除运算归根到底是乘法运算,其实质是分式的约分;
②除式或被除式是整式时,可把它们看作是分母是1的分式,然后依照除法法则进行计算;
③对于分式的乘除运算,如果没有其他条件(如括号等),应按照由左到右的顺序进行计算,以免出现类似m÷n×1/n=m÷1=m这样的错误.为了避免这样的错误发生,先将除法转化为乘法后再计算;
④分式的运算结果一定要化为最简分式或整式.
2、分式的乘方
分式的乘方法则:分式乘方要把分子、分母分别乘方.
用式子表示为:(a/b)^n=a^n/b^n(n为正整数,b≠0).
理解这两个法则,要注意如下几点:
①分式乘方时,一定要把分式加上括号.
②分式本身的符号也要同时乘方;
③分式分子或分母是多项式时,要避免出现类似(a+b)^n/c^n=(a^n+b^n)/c^n这样的错误.
3、分式的加减
分式的加减法法则:
(1)同分母分式相加减,分母不变,把分子相加减;
(2)异分母分式相加减,先通分,变为同分母的分式,再加减.
理解这两个法则,要注意如下几点:
①“把分子相加减”就是把各个分式的“分子整体”
相加减,各分子都应加括号,特别是相减时,要避免出现符号错误;
②异分母分式相加减首先转化为同分母分式相加减,然后按照同分母分式加减法法则进
行计算.其转化的关键是通分;
③异分母分式的加减运算的一般步骤是:
i通分:将异分母分式化为同分母分式;
ii写成“分母不变,把分子相加减”的形式;
iii分子化简:分子去括号、合并同类项;iv约分:将结果化为最简分式或整式.
(3)求最简公分母的方法:
①将各分母分解因式;
②找各分母系数的最小公倍数;
③找出各分母中不同的因式,相同因式中取次数最高的.满足②③的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
4、分式的混合运算
分式的混合运算法则:先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的.
在进行分式的混合运算过程中,要灵活运用交换律、结合律、分配律等.特别是分式的加减运算与加法的交换律、结合律相结合,会使运算过程简捷
C. 分式的加减怎么算
同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
分式的加早毁减法也包括同轿睁棚分母分式加减法和异分母分式加减法。同分母分式加减,分母不变,分子相加减;异分母分式加减,要先将其化为同分母分式再进行加减。
分子合并同类项后,若分子、分母有公因式,要约分化为最简分式或整式。整个的计算过程与分数的计算过程如出一辙。
例1、计算。
①闭则(2b-3c)/2bc+(2c-3a)/3ca+(9a-4b)/6ab
解法一、直接通分:
(2b-3c)/2bc+(2c-3a)/3ca+(9a-4b)/6ab=
[3a(2b-3c)+2b(2c-3a)+c(9a-4b)]/6abc
=[6ab-9ac+4bc-6ab+9ac-4bc]/6abc
=0
解法二、拆项裂项:
原式=1/c-3/2b+2/3a-1/c+3/2b-2/3a=0。
例2、已知1/a=3/(b+c)=5/(c+a),求
(a-2b)/(2b+c)的值。
解:由题意得c+a=5a,c=4a。
b+c=3a,b=3a-c=-a。
原式=[a-2(-a)]/[2(-a)+4a]
=3a/2a
=3/2。