㈠ 简便运算的规律和方法
一、什么是简便运算
“简便运算”是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算。
二、简便运算大全
(一)、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
说明:适用于加法交换律和乘法交换律。
(二)、结合律
(1)加括号法
①当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括号法
①当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
②当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就 要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
①分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
③注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借来还去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆还要注意不要改变数的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000
125×88=125×(8×11)=125×8 ×11=1000×8=8000
36×25=9×4×25=9×(4×25)=9×100=900
综上所述,在四则混合运算中,简便运算试题的类型不外乎这几种形式,只要掌握四则混合运算顺序,同时掌握好上述简便算法,就可以保证计算的时效。
㈡ 加减乘除简便运算法则定律
加减乘除简便运算法则是数学中一些基本的算术运算规则。这些规则包括:
交换律:在加法运算中,可以交换两个加数的顺序;在吵轿乘法运算中,可以交换两个因数的顺序。
结合律:在加法运算中,可以将两个加数合并为一个加数;在乘法运算中,可以将两个因数合并为一个因模隐数。
分配律:在乘法运算中,可以将一个因数分配给加数中的每一项。
乘法单位:乘以 1 不改变数的值,乘以 0 将数的值变为 0。
这些简便运算法则是数学计算的基础,用于解决算术问题并帮助更深旦碰厅入地理解数学概念。
㈢ 写出简便计算用的七大定律(用字母公式写
运算定律与简便计算:
1.加法交换律:a+b=b+a
两个加数交换位置,和不变,这叫做加法交换律。
2.加法结合律;(a+b)+c=a+(b+c)
先把前两个数相加或者先把后两个数相加,和不变,这叫做加法结合律。
3.乘法交换律:a×b=b×a
交换两个因数的位置,积不变,这叫做乘法交换律。
4.乘法结合律:(a×b)×c=a×(b×c)或a×b×c=a×(b×c)
先把前两个数相乘或者先把后两个数相乘,积不变,这叫做和乘法结合律。
5.乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c
乘法分配律的逆运用:a×c+a×b=(a+b)×c或a×c-b×c=(a-b)×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
6.在加法和减法的混合运算中,可以交换减数、加数的位置。但必须在交换位置时,连同前面的运算符号一起“搬家”,运算的结果不会改变。
即:a-(b-c)=a-b+c;a-(b+c)=a-b-c
7.在乘法和除法的混合运算中,乘法运算和除法运算的次序可以交换,运算的结果不会改变。但必须在交换位置时,连同前面的运算符号一起“搬家”。
即:a÷b÷c=a÷(b×c)=a÷c÷b;a÷b×c=a÷(b÷c)
㈣ 加法简便计算的方法规律
您好。
简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。
乘法分配律
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。如将上式中的+变为x,运用乘法结合律也可简便计算
乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
乘法交换律
乘法交换律用于调换各个数的位置:a×b=b×a
加法交换律
加法交换律用于调换各个数的位置:a+b=b+a
加法结合律
(a+b)+c=a+(b+c)
希望能够帮到您,谢谢,望采纳。
㈤ 简便方法的运算定律
小学里就学过的简便方法的运算定律有:
加法交换律 a+b=b+a
加法结合律 (a+b)+c=a+(b+c)
乘法交换律 ab=ba
乘法结合律 (ab)c=a(bc)
乘法分配律 a(b+c)=ab+ac。
㈥ 简便方法的运算定律
小学里就学过的简便方法的运算定律有:
加法交换律 a+b=b+a
加法结合律 (a+b)+c=a+(b+c)
乘法交换律 ab=ba
乘法结合律 (ab)c=a(bc)
乘法分配律 a(b+c)=ab+ac。
㈦ 8条简便运算的定律
1、加法交换律:
三个数相加,交换两个加数的位置,和不变。
公式:a+b+c= a+c+b
例题:
672+28+169
=672+28+169
=700+169
=869
此方法在简便运算过程中,关键在于交换后的两个数能凑整。扰做
2、加法结合律仿伍:
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c = a+(b+c)
例题:
738+68+132
=738+(缓大衡68+132)
=738+200
=938
此方法适用于两个数结合相加后能凑成整数。
3、乘法交换律:两个数相乘,交换两个因数的位置,积不变。
公式:a×b = b×a
例题:
12.5×2.5×0.8×4
=12.5×0.8×2.5×4
=10×10
=100
4、乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。
公式:(a×b)×c = a×(b×c)
例题:
0.125×6.5×8
=0.125×8×6.5
=1×6.5
=6.5
5、乘法分配律:
两个数的和与一个数相乘,先把它们分别与这个数相乘,再相加。
公式:(a+b)×c = a×c+b×c
变形公式:(a-b)×c = a×c-b×c
例题:
(40+8)×25
=40×25+8×25
=1000+200
=1200
6、减法的性质
注:这些都是由加法交换律和结合律衍生出来的。
减法性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:
abc=acb
例:
198-75-98
=198-98-75
=100-75
=25
7、除法的性质。
两个数的和或者差除以同一个数,等于这两个数分别去除以这个数,再相加。
公式:(a+b)÷c=a÷c+b÷c
例题:
(100+75)÷25
=100÷25+75÷25
=4+3
=7
8、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
㈧ 加减乘除简便运算法则定律
在数学中,有关加减乘除简算法则定律的计算方法及技巧如下,可以参考一下:
加法交换律:a+b+c=a+c+b。
加法结合律:a+b+c=a+(b+c)。
减法交换侓:a-b-c=a-c-b
减法结合侓:a-b-c=a-(b+c)。
乘法交换律:a×b=b×a。
乘法结合律(a×b)×c=a×(b×c)。
乘法分配律:(a+b)×c=a×c+b×c。
加减乘除运算法则定律
乘法分配律
两个数的和(差)同一个数相乘,可以先把两个加数(减数)分别同这个数相乘,再把两个积相加(减),积不变。
字母表达是:a×(b+c)=a×b+a×c
【a×(b-c)=a×b-a×c】
或:a×b+a×c=a×(b+c)
【a×b-a×c=a×(b-c)】
加减计算法则
1.整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。
2.小数加、减法的计算法则:
1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),
2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。)
3.分数加、减计算法则:
1)分母相同时,只把分子相加、减,分母不变;
2)分母不相同时,要先通分成同分母分数再相加、减。
㈨ 简便运算有定律吗
1.加法交换律:a+b=b+a
两个加数交换位置,和不变,这叫做加法交换律.
2.加法结合律;(a+b)+c=a+(b+c)
先把前两个数相加或者穗告扒先把后两个数相加,和不友败变,这叫做加法结合律.
3.乘法交换律:a×b=b×a
交换两个因数的位置,积不变,这叫做乘法交换律.
4.乘法结合律:(a×b)×c=a×(b×c)或a×b×c=a×(b×c)
先把前两个数相乘或者先把后两个数相乘,积不变,这叫做和乘法结合律.
5.乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c
乘法分配律的逆运用:a×c+a×b=(a+b)×c或a×c-b×c=(a-b)×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律.
6.一个数减去两个数的差,等于先减去第一个数,再加上第二数,即:a-(b-c)=a-b+c
7.某个数先减去第一个数,再加上第二个数,等于某数减去这两个数的差:a-b+c=a-(b-c)
8.某数减去几个数的和,等于连续减去这几个数,即:a-(b+c)=a-b-c
9.反过来,某数连续减去几个数,等于某数减去这几个数的和.即:a-b-c=a-(b+c)
10.在加法和减法的混合运算中,可以交换减数、加数的位置.但必须在交换位置时,连同前面的运算符号一起“搬家”,运算的结果不会改变.
11.某数连续除以两个数,等于某数除以这两个数的积,也等于某数除以第三个数的商,再除以第二个数,即:a÷b÷c=a÷(b×c)=a÷c÷b
12.某数除以另两个数的积,等于某数连续除以这个数,即:a÷(b×c)=a÷b÷c
13.某数除以另一个数的商再乘以第三个数,等于某数除以第二个数与第三个数的商,即:a÷b×c=a÷(b÷c)
14.两个数的积除以第三个数,等于用其中一个数除以第三个数,再与另猜昌一个乘数相乘,即:a×b÷c=
a×(b÷c
)=(a÷c)×b
15.在乘法和除法的混合运算中,乘法运算和除法运算的次序可以交换,运算的结果不会改变.但必须在交换位置时,连同前面的运算符号一起“搬家”.
16.两个数的和或差除以一个数,等于这两个数分别除以这一个数,再相加(或相减),即:
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
㈩ 乘除法的简便运算定律
乘法的定律
有乘法分配律:(a+b)×c=a×c+b×c
乘法交换律:a×b=b×a
乘法结合律:a×(b×c)=(a×b)×c
除法的简便运算可以利用除法的性质:
a÷b÷c=a÷(b×c)
这些定律都可以在计算乘除法中合理运用,使计算简便。