导航:首页 > 知识科普 > 怎么解方程的方法

怎么解方程的方法

发布时间:2023-03-27 04:36:35

① 怎样解方程

如何学会解方程的方法
在小学阶段,解方程是依据四则运算中已知数与得数之间的关系进行的。我们可以采用以下三种方法来解方程。

一、直接根据四则运算中已知数与得数之间的关系,求未知数的值。

例如:3.6÷x=0.9。这是除法式子,x是除数,表示x除3.6的商是0.9。根据除法中除数等于被除数除以商的关系,求x的值。

解方程: 3.6÷x=0.9

解: x=3.6÷0.9

x=4

二、把含有未知数x的项看成是一个数,逐步求出未知数的值。

例如:2x-6=14。把含有未知数的项(2x),看成是一个数。这样6是减数,2x是被减数,14是差。先求出2x等于多少,再进一步求出x的值。

解方程: 2x-6=14

解:2x=14+6

2x=20

x=20÷2

x=10

三、通过计算,先把原方程化简,再逐步求出方程的解。

例如:3x-2.5×4=5;先计算2.5×4,然后再依照前面的方法求未知数的值。

解方程: 3x-2.5×4=5

解: 3x-10=5

3x=5+10

3x=15

x=15÷3

x=5

又如:4.5x+5.5x+3=30;先计算4.5x+5.5x,然后再依照前面的方法求未知数的值。

解方程: 4.5x+5.5x+3=30

解: (4.5+5.5)x+3=30

10x+3=30

10x=30-3

10x=27

x=27÷10

x=2.7

练习:

解下列方程。

1.2-x=0.4 2.5x=63x+5=20 6x-14=10

7x-2x=5 (8+x)×8=120 5.4-3x=2×2.1 5x-2x-7=14
解方程怎么
解方程的步骤(1)有括号就先去掉(2)移项:将含未知数的项移到左边,常数项移到另右边(3)合并同类项:使方程变形为单项式(4)方程两边同时除以未知数的系数得未知数的值例如:3+x=18 解: x =18-3 x =15 ∴x=15是方程的解—————————— 4x+2(79-x)=192 解:4x+158-2x=192 4x-2x+158=192 2x+158=192 2x=192-158 2x=34 x=17 ∴x=17是方程的解—————————— πr=6.28(只取π小数点后两位)解这道题首先要知道π等于几,π=3.1415926535,只取3.14,解:3.14r=6.28 r=6.28/3.14=2 不过,x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。有些式子右边枯轿有x,为了简便算,可以调换位置。 一元三次方程求解 一元三次方程的求根公式用通常的演绎思维是作不出来的,没漏肆用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以搜迟(2)可化为x^3=(A+B)+3(AB)^(1/3)x,移项可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得(6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即(8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p......
请问怎么解方程?用计算器
参考TI84 Plus 中文说明

wenku./...=51NaN
怎么做?????解方程 比例
解:设能做a根

126:x=9:5

9x=126*5

x=630/9

x=70根
8+x等于20怎样解方程,
8+x=20

等式两边同时 - 8

x=20-8

x=12

② 解决方程的方法有哪些

1、估算法:刚学解方程绝散时的入门方法。直接估计方程的解,然后代入原方程验证。

2、应用等式的性质进行解方程。

3、合并同类项:使方程变形为单项式

4、移项:将含未知数的项移并简氏到左边,常数项移到右边

例如:3+x=18

解:x=18-3

x=15

5、去括号:运用去括号法则,将方程中的括号去掉。

4x+2(79-x)=192

解: 4x+158-2x=192

4x-2x+158=192

2x+158=192

2x=192-158

x=17

6、公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。

7、函数图像法:利用方程的解为两个以上关联函数图像的交点的几何意义求解。

(2)怎么解方程的方法扩展阅读

解方程依据

1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;

2、等式的基本性质

性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。

(1)a+c=b+c

(2)a-c=b-c

性质2:等式的两边同时乘或除以同一个不为0的数,所得的结果咐或仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:

a×c=b×c 或a/c=b/c

性质3:若a=b,则b=a(等式的对称性)。

性质4:若a=b,b=c则a=c(等式的传递性)。

③ 解方程怎么解

解方程的方法包括四种,分别是一元一次方程的解法、二元一次方程组的解法、一元二次方程的解法、分式方程的解法。

一元一次方程的解法

所谓一元一次方程,就是含有一个未知数,且未知数的最高次数为1的整式方程。
求解一元一次方程的步骤包括:去分母、去括号、移项、合并同类项,直至把一元一次方程化简为ax=b(a≠0)的形式,再两边同除以系数a,就可以求得一元一次方程的解。

二元一次方程组的解法

所谓二元一次方程组,就是含有两个未知数,且未知数的最高次数为1的整式方程组。求解二元一次方程组的关键步骤是消元,把二元一次方程组转化为一元一次方程,塌绝再按照一元一次方程的解题步骤,就可以求得方程组的解。我们常用的消元方法两种,分别是代团空姿入消元法和加减消元法。

一元二次方程的解法

所谓一元二次方程组,就是含有一个未知数,且未知数的最高次数为2的整式方程。求解一元二次方程的方法有直接开平方法、配方法、因式分解法和公式法。当然,在求解一元二次方程之前,我们可以先把这个方程整理成一般形式ax²+bx+c=0(a≠0),用根的判别式来判断一下方程根的情况,根的判别式=b²-4ac。如果根的判别式是正数,则一元二次方程有两个不同的根;如果根的判别式=0,则一元二次方程有两个相同的根;如果根的判别式是负数,则一元二次方程没有实数根。

分式方程的解法

所谓分式方程组,就是分母含有未知数的方程。求解分式方程的关键步骤是去分母,把分式方程转化为整式方程,再按照整式方程的求解方法求得方程的解。但是,在去分母的过程中可能会导致增根的出现,也就是说,求得的整式方程的解却不是原分式方程的解。所以,求解分式方程的最关键步骤是验根,也就是说,要把求解整式方程亏芦得到的每个解代入原分式方程进行检验,如果分式方程的分母为零,则此解就是增根,应该舍去。

【结语】
解方程是初中数学的重要知识点,对于不同种类的方程,我们要采取不同的求解方法,只有这样才能既快又好地求得方程的解。

④ 解方程有几种方法

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接开平方法;2、配方法;3、公式法;4、因式分解法。 1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2;=n (n≥0)的 方程,其解为x=±√n+m . 例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2;,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解符号) ∴x= ﹙﹣1±√7﹚/3 ∴原方程的解为x?=﹙√7﹣1﹚/3,x?=﹙﹣√7-1﹚/3 (2)解: 9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x=﹙ 4±√11﹚/3 ∴原方程的解为x?=﹙4﹢√11﹚/3,x?= ﹙4﹣√11﹚/3 2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax^2+bx=-c 将二次项系数化为1:x^2+b/ax=- c/a 方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2; 方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚² 当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚² ∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式) 例2.用配方法解方程 3x²-4x-2=0 解:将常数项移到方程右边 3x²-4x=2 将二次项系数化为1:x²-﹙4/3﹚x= ? 方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=? +(4/6 )² 配方:(x-4/6)²= ? +(4/6 )² 直接开平方得:x-4/6=± √[? +(4/6 )² ] ∴x= 4/6± √[? +(4/6 )² ] ∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ . 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x²-8x=-5 解:将方程化为一般形式:2x²-8x+5=0 ∴a=2, b=-8, c=5 b²-4ac=(-8)²-4×2×5=64-40=24>0 ∴x=[(-b±√(b²-4ac)]/(2a) ∴原方程的解为x?=,x?= . 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x²+3x=0 (3) 6x²+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)

⑤ 解方程的方法有哪些

解方程方法:

估算法:刚学解方程式的入门方法。直接估计方程的解,然后代入原方程验证。应用等式的性质进橘绝型行解方程。合并同类项:使方程变形为单项式,移项:将含未知数的项移到左边,常数项移到右边,去括号:运用去括号法则,将方程中的括号去掉。公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。函数图像法:利用方程的解为两个以上关联函数图像的交点的几何意义求解。

在数学中很多题都需要进行解方程,而且解方程是最基础的,如果不会解方程,那么这一整道题将无法完成,所以解方程非常重要。希望同学们都能够将解方程的6个基本步骤牢牢记忆。


【解方程小技巧】


解方程的6个公式是:一个加数=和-另一个加数,被减数=差+减数,减数=被减数-差,一个因数=积÷另一个因数,被除数=商×除数,除数=被除数÷商。


解方程必背公式口诀是:去分母要都乘到,多项式分子要带括号;去括号宏此也要都乘到,千万小心是符号;移项变号别漏项,已知未知隔等号;合并同类项加系数,系数圆猜化1要记牢。


解方程是使方程左右两边相等的未知数的值,叫作方程的解。求方程全部的解或判断方程无解的过程解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。

⑥ 解方程怎么解

使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。

方法⒈估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。⒉应用等式的性质进行解方程。⒊合并同类项:使方程变形为单项式⒋移项:将含未知数的项移到左边,常数项移到右边例如:

不过,x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。有些式子右边有x,为了简便算,可以调换位置。

⑦ 方程式怎么解 数学

解消卜方程的方法如下:

1、直接运用四则运算中各部分之间的关系去解.如x-8=12。

加数+加数=和 一个加数=和-另一个加数。

被减数-减数=差 减数=被减数-差 被减数=差+减数。

被乘数×乘数=积 一个因数=积÷另一个因数。

被除数÷除数=商 除数=被除数÷商 被除数=除数×商大桥孝。

2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41。

先把3x看作一个数,然后再解。

3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2。

要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。

4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20。

先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。

用字母表示数滚稿的注意事项

1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写.数与数相乘,乘号不能省略。

2、当1和任何字母相乘时,“ 1” 省略不写。

3、数字和字母相乘时,将数字写在字母前面。

阅读全文

与怎么解方程的方法相关的资料

热点内容
艾滋检测方法及原理 浏览:218
竹椅子使用方法视频 浏览:63
照片去水印的方法手机上 浏览:791
男性腺素高的治疗方法 浏览:600
8x45x2用简便方法算 浏览:958
研究产后盆底肌康复的方法 浏览:803
人飞起来最简单的方法 浏览:6
缓存会在哪里设置方法 浏览:787
快速收肘的方法 浏览:578
手机屏幕保护时间在哪里设置方法 浏览:919
鉴定别人的手机的方法 浏览:620
直播发题的技巧和方法 浏览:273
感冒身体发热怎么办简单的方法 浏览:199
紫砂水洗使用方法 浏览:416
小孩支气管治疗方法 浏览:685
杏种子的种植方法 浏览:930
凉席如何除螨最有效方法 浏览:476
研究心理学的方法内容及优缺点 浏览:505
家用鱼缸水泵安装方法 浏览:715
物理降温头枕冰袋正确方法图片 浏览:528