Ⅰ 有谁能给我说说配方法的方法与技巧。真正学习了才发现高中数学配方法很普及…拜托
一元二次方程二次项系数为一时
配方法先看常数项
比如x^2+2x-3
常数项是负三
先别管正负数拆成两个数相乘
使这两个数相加减得一次项系数
这里拆成1和3
最后确定正负号(-1和+3)
得(x-1)(x+3)
练熟上面的再联系二次项系数不为一的
这里我习惯用图格法
比如2x^2+2x-4
在草稿纸上如下面
1 2
2 -2
————————
4 -2
这个初中都学过
最终得(x+2)(2x-2)
说到底,配方法靠练
考试时,我自然就能配的出,很节约时间
别的方法都是纸上谈兵,不能立马算出,而考试时这样是答不完题目的
Ⅱ 配方法的公式是什么
配方法是根据完全平方公式:(a+/-b)²=a²+/-2ab+b²得出的。
配方只适用于等式方程,就是把等式通过左右两边同时加或减去一个数,使这个等式的左边的式子变成完全平方式的展开式,再因式分解就可以解方程了。
举例:
2a²-4a+2=0
a²-2a+1=0(二次项系数要先化为1,方便使用配方法解题,所以等式两边同除二次项系数2)
(a-1)²=0(上一步的式子发现左边是完全平方式,所以根据完全平方公式,将a²-2a+1因式分解为(a-1)²,这样就完成了配方)
a-1=0(最后等式两边同时开平方)
a=1(得到结果)
(2)配方法最后一个怎么设扩展阅读
配方法的应用
1、用于比较大小:
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。
2、用于求待定字母的值:
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。
3、用于求最值:
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值。
4、用于证明:
“配方法”在代数证明中有着广泛的应用,学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用。
Ⅲ 一元二次方程配方法
一元二次方程配方法:
步骤:
将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。
用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
配方法的理论依据是完全平方公式a²+b²±2ab=(a±b)²
配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。