Ⅰ 降维的方法主要有
在分析高维数据时,降维(Dimensionality rection,DR)方法是我们不可或缺的好帮手。
作为数据去噪简化的一种方法,它对处理大多数现代生物数据很有帮助。在这些数据集中,经常存在着为单个样本同时收集数百甚至数百万个测量值的情况。
由于“维度灾难”(curse of dimensionality)的存在,很多统计方法难以应用到高维数据上。虽然收集到的数据点很多,但是它们会散布在一个庞大的、几乎不可能进行彻底探索的高维空间中。
通过降低数据的维度,你可以把这个复杂棘手的问题变得简单轻松。除去噪音但保存了所关注信息的低维度数据,对理解其隐含的结构和模式很有帮助。原始的高维度数据通常包含了许多无关或冗余变量的观测值。降维可以被看作是一种潜在特征提取的方法。它也经常用于数据压缩、数据探索以及数据可视化。
虽然在标准的数据分析流程中已经开发并实现了许多降维方法,但它们很容易被误用,并且其结果在实践中也常被误解。
本文为从业者提供了一套有用的指南,指导其如何正确进行降维,解释其输出并传达结果。
技巧1:选择一个合适的方法
当你想从现有的降维方法中选择一种进行分析时,可用的降维方法的数量似乎令人生畏。事实上,你不必拘泥于一种方法;但是,你应该意识到哪些方法适合你当前的工作。
降维方法的选择取决于输入数据的性质。比如说,对于连续数据、分类数据、计数数据、距离数据,它们会需要用到不同的降维方法。你也应该用你的直觉和相关的领域知识来考虑收集到的数据。通常情况下,观测可以充分捕获临近(或类似)数据点之间的小规模关系,但并不能捕获远距离观测之间的长期相互作用。对数据的性质和分辨率的考虑是十分重要的,因为降维方法可以还原数据的整体或局部结构。一般来说,线性方法如主成分分析(Principal Component Analysis, PCA)、对应分析(Correspondence Analysis, CA)、多重对应分析(Multiple Correspondence Analysis, MCA)、经典多维尺度分析(classical multidimensional scaling, cMDS)也被称为主坐标分析(Principal Coordinate Analysis, PCoA) 等方法,常用于保留数据的整体结构;而非线性方法,如核主成分分析(Kernel Principal Component Analysis, Kernel PCA)、非度量多维尺度分析(Nonmetric Multidimensional Scaling, NMDS)、等度量映射(Isomap)、扩散映射(Diffusion Maps)、以及一些包括t分布随机嵌入(t-Distributed Stochastic Neighbor Embedding, t-SNE)在内的邻近嵌入技术,更适合于表达数据局部的相互作用关系。NE技术不会保留数据点之间的长期相互作用关系,其可视化报告中的非临近观测组的排列并没有参考价值。因此,NE的图表不应该被用于数据的大规模结构的推测
Ⅱ 降维是什么意思
意思如下:
维,在几何学上指空间独立而互相正交的方位数,通常的空间有三维,平面或曲面有二维,直线或曲线只有一维。
在商业领域,企业的竞争力可以体现在若干个维度的累加上,这些维度包括核心技术、成本优势、管理优势、人才优势、地域优势等多个方面。
降维就是把竞争对手拉入到一个更低维度的竞争模式中,让对手因为失去原有的竞争力而无所适从。
降维方法
降维方法分为线性和非线性降维,非线性降维又分为基于核函数和基于特征值的方法。
1、线性降维方法:PCA 、ICA LDA、LFA、LPP(LE的线性表示)
2、非线性降维方法:
(1)基于核函数的非线性降维方法:KPCA 、KICA、KDA
(2)基于特征值的非线性降维方法(流型学习):ISOMAP、LLE、LE、LPP、LTSA、MVU
方法介绍
1、LLE(Locally Linear Embedding)算法(局部线性嵌入):
每一个数据点都可以由其近邻点的线性加权组合构造得到。
算法的主要步骤分为三步:
(1)寻找每个样本点的k个近邻点(k是一个预先给定的值);
(2)由每个样本点的近邻点计算出该样本点的局部重建权值矩阵;
(3)由该样本点的局部重建权值矩阵和其近邻点计算出该样本点的输出值,定义一个误差函数。
Ⅲ (十)PCA降维算法
主成分分析(Principal components analysis,以下简称PCA) 是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。它可以通过 线性变换 将原始数据变换为一组 各维度线性无关 的表示,以此来提取数据的主要线性分量。需要注意的是,PCA一般只用于线性数据降维,对于非线性数据一般采用KPCA。
降维就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据,并且希望损失尽可能的小。首先看几张图,有一个直观的认识。
这里面,把椭圆看成是数据:
基于这个知识,如果我们想对数据进行降维的话,比如图1的两个维度的数据降成一维,我们可以选择保留X1这个维度的数据,因为在这个维度上蕴含的信息量更多。同理,图2就可以保留x2这个维度的数据。但是,问题来了,图3应该保留哪个维度的数据呢?答案是保留哪个维度都不好,都会丢失较大的信息量。但是,如果我们把图3的坐标轴旋转一下
比较容易看出,图3在新的坐标轴下就能进行降维了。
所以,第一,变换正确的坐标轴(基);第二,保留方差最大的几个轴作为主成分,这样的做法就是PCA的核心思想。
从前文可以看出,理想的坐标轴是要求数据投在新坐标轴后,尽可能的分散,也就是数据的方差最大。然后每次选择方差最大的轴作为主成分。
将前文2维降1维的例子扩展到更高维度,还有一个问题需要解决,考虑三维降到二维问题。与之前相同,首先我们希望找到一个方向使得投影后方差最大,这样就完成了第一个方向的选择,继而我们选择第二个投影方向。如果我们还是单纯只选择方差最大的方向,很明显,这个方向与第一个方向应该是“几乎重合在一起”,显然这样的维度是没有用的,因为发生了大量的信息重复,起不到降维的作用,因此,应该有其他约束条件——就是正交。 PCA要求轴与轴之间是正交的,也就是不同维度的信息相关性为0。
在表示相关性中,相关系数与协方差是等价的,这里为了方便计算,使用协方差。下面是协方差公式,当协方差为0时,表示两个特征a,b线性不相关。
可以发现,当a=b时,协方差公式就变成了方差公式,方差是特殊的协方差。如果运气更好,特征a与b的平均数都为0,那么公式会进一步简化,得到:
所以说,为了计算方便,PCA降维前,一般都要求将所有特征属性中心化,即平均数为0。
因为PCA要求,同一轴内方差最大,不同轴协方差为0,如何把它们放在一块呢?这里就引入了协方差矩阵的概念:
假设有m个样本,每个样本特征维度是2,每个特征都经过中心化处理:
我们发现协方差矩阵的对角线是方差,而且是对称矩阵。方差和协方差都放在了一个矩阵里面,只需对这个矩阵优化,使它除了对角线的其余元素都为0,就可以了,美滋滋。
我们知道矩阵乘法,本质上就是一种线性变换的过程。而正交基矩阵的乘法,则是坐标系变换的过程。设原空间的数据为X,协方差矩阵为C,经过正交基矩阵P,得到了新坐标系下的数据Y,即Y=PX。那么新坐标系下的协方差矩阵D是怎样的呢?
我们发现,新旧空间的协方差矩阵是有关系的,而且都和变换矩阵P有关系。问题就转化成了,能不能找到一个矩阵P,使得新空间下的协方差矩阵的非对角线元素都为0.
首先,原始数据矩阵X的协方差矩阵C是一个实对称矩阵,它有特殊的数学性质:
也就是说,P就是是协方差矩阵的特征向量单位化后按行排列出的矩阵,其中每一行都是C的一个特征向量。 如果设P按照中特征值的从大到小,将特征向量从上到下排列,则用P的前K行组成的矩阵乘以原始数据矩阵X,就得到了我们需要的降维后的数据矩阵Y 。
其实,经过数学上的推导的,我们就可以知道,特征值对应的特征向量就是理想中想取得正确的坐标轴,而特征值就等于数据在旋转之后的坐标上对应维度上的方差。
由于协方差矩阵的维度和特征相同,所以在进行特征值分解时,得到的特征值数目不会超过特征的数目。
在学习线性代数时,我们都会学矩阵的特征值分解,我们知道一个方阵A经过 特征值分解 后就得到 特征向量 和 特征值 了。那么,这个所谓的特征值和特征向量到底是什么东西呢?
很多人都会说是那个经典的式子:
首先给出概念上的一种解释。所谓的特征值和特征向量,最重要的是理解“特征”这两个字,特征向量翻译为eigen vector, eigen这个单词来自德语,本义是在“本身固有的,本质的”。纯数学的定义下,并不能很明白地理解到底为什么叫做特征值和特征向量。但是举一个应用例子,可能就容易理解多了。
在图像处理中,有一种方法就是特征值分解。我们都知道图像其实就是一个像素值组成的矩阵,假设有一个100x100的图像, 对这个图像矩阵做特征值分解,其实是在提取这个图像中的特征,这些提取出来的特征是一个个的向量,即对应着特征向量。而这些特征在图像中到底有多重要,这个重要性则通过特征值来表示。 比如这个100x100的图像矩阵A分解之后,会得到一个100x100的特征向量组成的矩阵Q,以及一个100x100的只有对角线上的元素不为0的矩阵E,这个矩阵E对角线上的元素就是特征值,而且还是按照从大到小排列的(取模,对于单个数来说,其实就是取绝对值),也就是说这个图像A提取出来了100个特征,这100个特征的重要性由100个数字来表示,这100个数字存放在对角矩阵E中。 在实际中我们发现,提取出来的这100个特征从他们的特征值大小来看,大部分只有前20(这个20不一定,有的是10,有的是30或者更多)个特征对应的特征值很大,后面的就都是接近0了,也就是说后面的那些特征对图像的贡献几乎可以忽略不计。
我们知道,图像矩阵 A 特征值分解后可以得到矩阵 P 和矩阵 E (特征值对角矩阵):
我们可以看到,在只取前20个特征值和特征向量对图像进行恢复的时候,基本上已经可以看到图像的大体轮廓了,而取到前50的时候,几乎已经和原图像无异了。明白了吧,这就是所谓的矩阵的特征向量和特征值的作用。
所以归根结底,特征向量其实反应的是矩阵A本身固有的一些特征,本来一个矩阵就是一个线性变换,当把这个矩阵作用于一个向量的时候,通常情况绝大部分向量都会被这个矩阵A变换得“面目全非”,但是偏偏刚好存在这么一些向量,被矩阵A变换之后居然还能保持原来的样子,于是这些向量就可以作为矩阵的核心代表了。于是我们可以说:一个变换(即一个矩阵)可以由其特征值和特征向量完全表述,这是因为从数学上看,这个矩阵所有的特征向量组成了这个向量空间的一组基底。而矩阵作为变换的本质其实不就把一个基底下的东西变换到另一个基底表示的空间中么?
参考:
https://blog.csdn.net/hjq376247328/article/details/80640544
https://blog.csdn.net/hustqb/article/details/78394058
https://blog.csdn.net/woainishifu/article/details/76418176
Ⅳ 什么是降维打击,怎么降维打击
1、降维攻击出自中国科幻作家刘慈欣的科幻小说《三体Ⅲ·死神永生》,从三维降至二维的攻击由二向箔触发。
2、降维打击指的是,对三维宇宙中某个区域(通常是敌对文明所在的区域)发射一个很小的二维空间碎块,碎块用一种力场封装,力场蒸发以后二维空间与三维空间接触以后,就会使三维空间向二维空间跌落,使整个空间跌落到二维。
3、降维攻击有别于降级攻击,两者的区别有点像量与质的区别。如果有人说降级攻击,最多是说两者的水平不在一个层次;但如果说降维打击,则代表两者已经不是在一个共同的认知范围内。
4、降维打击的意思就是和竞争对手在一个维度上进行竞争,赢得竞争胜利的难度比较大,则自己主动降低一个竞争维度,实现以小打大,以弱胜强的一种竞争策略。
例如在一线城市成功比较难,选择回到老家在二三线城市寻找发展机会。在全国市场上很难取得竞争胜利,主动退缩到某个区域市场,做不大海里的虾米,而去做池塘里的鲸鱼。
(4)降维方法都用于哪些领域扩展阅读:
降维打击常用环境:
1、IT界,有这样一个说法一股悲观情绪在互联网业蔓延,一群自称为“心理阴暗”的从业者,纠结于那些没有底线的竞争、大公司的抄袭、小公司不再创新、最终生态的破坏,可参照《降维攻击与世界下坠》。
2、文化界,两个人打笔仗,打到最后,往往文章的内容变成争论“他是人,他不是人”这种可笑的攻击上,这种也叫降维攻击。比如,有人曾经打笔仗,直接说出了:“文坛是个屁。”,直接降级攻击KO了某个作家。
Ⅳ 常用降维方法之PCA 和 LDA
PCA本质上是将方差最大的方向作为主要特征,并且在各个正交方向上将数据“离相关”,也就是让它们在不同正交方向上没有相关性。而方差最大的那个维度是主成分。
PCA是比较常见的线性降维方法,通过线性投影将高维数据映射到低维数据中,所期望的是在投影的维度上,新特征自身的方差尽量大,方差越大特征越有效,尽量使产生的新特征间的相关性越小。
PCA算法的具体操作为对所有的样本进行中心化操作,计算样本的协方差矩阵,然后对协方差矩阵做特征值分解,取最大的n个特征值对应的特征向量构造投影矩阵。
再举个栗子:
下面举一个简单的例子,说明PCA的过程。
假设我们的数据集有10个二维数据(2.5,2.4), (0.5,0.7), (2.2,2.9), (1.9,2.2), (3.1,3.0), (2.3, 2.7), (2, 1.6), (1, 1.1), (1.5, 1.6), (1.1, 0.9),需要用PCA降到1维特征。
首先我们对样本中心化,这里样本的均值为(1.81, 1.91),所有的样本减去这个均值向量后,即中心化后的数据集为(0.69, 0.49), (-1.31, -1.21), (0.39, 0.99), (0.09, 0.29), (1.29, 1.09), (0.49, 0.79), (0.19, -0.31), (-0.81, -0.81), (-0.31, -0.31), (-0.71, -1.01)。
现在我们开始求样本的协方差矩阵,由于我们是二维的,则协方差矩阵为:
对于我们的数据,求出协方差矩阵为:
求出特征值为(0.0490833989, 1.28402771),对应的特征向量分别为:
由于最大的k=1个特征值为1.28402771,对于的k=1个特征向量为 则我们的W=
我们对所有的数据集进行投影 得到PCA降维后的10个一维数据集为:(-0.827970186, 1.77758033, -0.992197494, -0.274210416, -1.67580142, -0.912949103, 0.0991094375, 1.14457216, 0.438046137, 1.22382056)
在上面的PCA算法中,我们假设存在一个线性的超平面,可以让我们对数据进行投影。但是有些时候,数据不是线性的,不能直接进行PCA降维。这里就需要用到和支持向量机一样的核函数的思想,先把数据集从n维映射到线性可分的高维N>n,然后再从N维降维到一个低维度n', 这里的维度之间满足n'<n<N。
使用了核函数的主成分分析一般称之为核主成分分析(Kernelized PCA, 以下简称KPCA。假设高维空间的数据是由n维空间的数据通过映射ϕ产生。
则对于n维空间的特征分解:
映射为:
通过在高维空间进行协方差矩阵的特征值分解,然后用和PCA一样的方法进行降维。一般来说,映射ϕ不用显式的计算,而是在需要计算的时候通过核函数完成。由于KPCA需要核函数的运算,因此它的计算量要比PCA大很多。
这里对PCA算法做一个总结。作为一个非监督学习的降维方法,它只需要特征值分解,就可以对数据进行压缩,去噪。因此在实际场景应用很广泛。为了克服PCA的一些缺点,出现了很多PCA的变种,比如第六节的为解决非线性降维的KPCA,还有解决内存限制的增量PCA方法Incremental PCA,以及解决稀疏数据降维的PCA方法Sparse PCA等。
PCA算法的主要优点有:
LDA(线性判别分析,Linear Discriminant Analysis)是另一种常用的降维方法,它是有监督的。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理。这里需要注意的是,此处的LDA与文本主题模型中的LDA(隐含狄利克雷分布,Latent Dirichlet Allocation)并不相同,他是一种处理文档的主题模型。
LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的。这点和PCA不同。PCA是不考虑样本类别输出的无监督降维技术。
LDA的思想可以用一句话概括,就是“投影后类内方差最小,类间方差最大”。
什么意思呢? 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大。
可能还是有点抽象,我们先看看最简单的情况。假设我们有两类数据 分别为红色和蓝色,如下图所示,这些数据特征是二维的,我们希望将这些数据投影到一维的一条直线,让每一种类别数据的投影点尽可能的接近,而红色和蓝色数据中心之间的距离尽可能的大。
以上就是使用LDA进行降维的算法流程。实际上LDA除了可以用于降维以外,还可以用于分类。一个常见的LDA分类基本思想是假设各个类别的样本数据符合高斯分布,这样利用LDA进行投影后,可以利用极大似然估计计算各个类别投影数据的均值和方差,进而得到该类别高斯分布的概率密度函数。当一个新的样本到来后,我们可以将它投影,然后将投影后的样本特征分别带入各个类别的高斯分布概率密度函数,计算它属于这个类别的概率,最大的概率对应的类别即为预测类别。
LDA用于降维,和PCA有很多相同,也有很多不同的地方,因此值得好好的比较一下两者的降维异同点。
这点可以从下图形象的看出,在某些数据分布下LDA比PCA降维较优。
当然,某些某些数据分布下PCA比LDA降维较优,如下图所示:
LDA算法既可以用来降维,又可以用来分类,但是目前来说,主要还是用于降维。在我们进行图像识别图像识别相关的数据分析时,LDA是一个有力的工具。下面总结下LDA算法的优缺点。
LDA算法的主要优点有:
参考文章: 刘建平老师的博客园
Ⅵ 第十五章 降维
第二种类型的无监督学习问题,叫做降维。
这里有一些,你想要使用降维的原因:
① 数据压缩
数据压缩不仅能对数据进行压缩,使得数据占用较小的内存或硬盘空间。它还能对学习算法进行加速
② 可视化数据
但首先,让我们谈论降维是什么。举个例子,假设我们收集了一个数据集,它有很多很多的特征,我只在这里绘制两个特征。
假如,对我们来说,这两个特征,x_1 是某物体的厘米长度,另一个特征x_2 是同一物体的英寸长度。这实际上是一种高度冗余的表示。
对于这两个单独的特征 x_1 和 x_2,它们表示的都是基本长度。或许我们想做的是,把数据减少到一维。只有一个数字来测量某物体的长度。
这个例子可能有点牵强,这与我在行业中所见的完全是两回事。
如果你有几百个或成千上万的特征,你很容易就会迷失,自己到底有哪些特征。有时可能有几个不同的工程团队,也许一个工程队给你二百个特征,第二工程队给你另外三百个的特征,第三工程队给你五百个特征。最后加起来你就有一千多个特征,这时就很难去了解某个特征是从哪个小组得到的,这时就比较容易产生这与高度冗余的特征。
并且,如果这里的 厘米 和 英寸 长度都被四舍五入了,这就是这个例子为什么不是完美地落在一条直线上。
👆另一个例子:如果你想要调查或做这些不同飞行员的测试——你可能有两个特征:x_1 是他们的技能(直升机飞行员);x_2 表示他们是否喜欢飞行。也许这两个特征将高度相关。你真正关心的可能是这条红线的方向。它是一个不同的特征,用来真正测量飞行员能力的特征。
还是那句话,如果特征高度冗余,那么你可能真的需要降低维数
如果我们将数据从二维(2D)降到一维(1D),究竟意味着什么?
现在我把不同的样本,用不同的颜色标出。在这时,通过降维,我的意思是我想找出这条看起来大多数样本所在的直线(绿色)。所有数据都投影到这条直线上,通过这种做法,我能够测量出每个样本在线上的位置,现在我能做的是建立新特征 z_1。我们只需要一个数,就能确定z_1所在的位置,也就是说z_1是一个全新的特征。它能够指定绿线上每一个点位置。
之前的样本 x_1,它是一个二维向量。在降维后,我们可用一维向量(即,实数)z_1表示第一个样本。
总结一下:
如果我们允许一个近似于原始数据集的数据集, 该数据集通过投射原始样本数据到这个绿色线上而得到。那么,我们只需要一个实数,就能指定点在直线上的位置。所以,我能够只用一个数字表示样本的位置,通过把这些原始样本都投射到绿线上(这是对原始数据集的一种近似,因为我将这些样本都投射到了同一条直线上)。这样(样本从用二维表示,变为用一个实数表示)就能把内存/数据空间的需求减半。
另外,更有趣也更重要的是。在之前的视频中,我们将能够了解到,这么做能够让学习算法运行得更快。
另一个例子,将数据从 3D 降到 2D。
降维的第二个应用:可视化数据
在许多及其学习问题中,如果我们能将数据可视化,我们便能寻找到一个更好的解决方案,降维可以帮助我们。
假使我们有关于许多不同国家的数据,每一个特征向量都有50个特征(如GDP,人均GDP,平均寿命等)。如果要将这个50维的数据可视化是不可能的。使用降维的方法将其降至2维,我们便可以将其可视化了。
比如,你可能发现,横轴(z_1)大致相当于国家的总体规模或者国家的总体经济活跃程度,所以横轴代表的是GDP、一个国家的经济规模。而纵轴大致对应于人均GDP。你可能会发现,这50个 特征,实际上只偏离为两个主要维度。(这样做的问题在于,降维的算法只负责减少维数,新产生的特征的意义就必须由我们自己去发现了)
一个特殊的算法:PAC,也叫做“主成分分析”。它可以用来做降维操作,可以用来实现我们之前所提到的压缩数据。
主成分分析(PCA)是最常见的降维算法。
在PCA中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据都投射到该向量上时,我们希望投射平均均方误差能尽可能地小。方向向量是一个经过原点的向量,而投射误差是从特征向量向该方向向量作垂线的长度。
PCA 问题的公式描述。换句话说,我们会试着用公式准确地表述PCA的用途。
所以,正式的说,PCA做的就是,它会找到一个低维平面(该例子中,是条直线),然后将数据投影在上面,使这些蓝色小线段(即,点到平面的距离)长度平方最小。这个蓝色小线段的距离,有时也称投影误差。
所以,PCA 所做的就是,它会试图寻找一个投影平面对数据进行投影,使得能最小化这个距离。
另外在应用PCA 之前,常规的做法是,先进行 均值归一化,使得特征量 x_1 和 x_2 其均值为0。并且其数值在可比较的范围之内。(本例中,我们已经处理过了)
后面会详细讲,PCA背景下的均值归一化问题的细节。
PCA做的就是,如果想将数据从二维降到一维。我们要试着找一个方向向量,使得向量 u^(i) ∈ R^n (本例中, n = 2,即,u^(i) ∈ R^2)投影到这个方向向量上的投影误差最小。
更通常的情况是:我们会有N维数据,并且我们想其降到K维,这种情况下,我们不只是想找单个向量来对数据进行投影,而是想寻找K个方向来对数据进行投影,来最小化投影误差。(我们要做的是,将数据投影到这 k 个向量展开的线性子空间上)
u^(1) 和 u^(2) 两个向量一起定义了一个二维平面。我们将我们的数据投影到上面。
因此,PCA做的是其视图找出一条直线,或一个平面,或其他维的空间,然后对数据进行投影,以最小化平方投影。90度投影,或正交投影的误差。
事实上,PCA不是线性回归,尽管看上去有一些相似,但是它们确实是两种不同的算法。
上图中,左边的是线性回归的误差(垂直于横轴投影),右边则是主要成分分析的误差(垂直于红线投影)。
主成分分析最小化的是投射误差(Projected Error),而线性回归尝试的是最小化预测误差。线性回归的目的是预测结果,而主成分分析不作任何预测。
PCA将n个特征降维到k个,可以用来进行数据压缩,如果100维的向量最后可以用10维来表示,那么压缩率为90%。同样图像处理领域的KL变换使用PCA做图像压缩。但PCA 要保证降维后数据的特性损失最小。
PCA技术的一大好处是对数据进行降维的处理。我们可以对新求出的“主元”向量的重要性进行排序,根据需要取前面最重要的部分,将后面的维数省去,可以达到降维从而简化模型或是对数据进行压缩的效果。同时最大程度的保持了原有数据的信息。
PCA技术的一个很大的优点是,它是完全无参数限制的。在PCA的计算过程中完全不需要人为的设定参数或是根据任何经验模型对计算进行干预,最后的结果只与数据相关,与用户是独立的。
但是,这一点同时也可以看作是缺点。如果用户对观测对象有一定的先验知识,掌握了数据的一些特征,却无法通过参数化等方法对处理过程进行干预,可能会得不到预期的效果,效率也不高。
主成分分析算法
在使用PCA之前,首先要做的是,进行数据的预处理。
给定一个交易例子的集合,
预处理:
① 一定要做的一个事情是:执行均值归一化。
② 依据于你的数据,可能也要进行特征缩放。
这两个过程,即在我们有监督学习中,均值标准化过程 与 特征缩放的过程 是相似的。实际上,确实是相同的过程,除了我们现在是对未标记数据 x^(1) 到 x^(m) 做 均值标准化过程 与 特征缩放过程。
接下来,如果不同的特征有非常不相同的缩放,例如 x_1 是房子的尺寸, x_2 是卧室的数量。我们缩放每一个特征,一个相对的价值范围。
相对于之前的监督学习:x_j^(i) = ( (x_j^(i) - u_j) / s_j )。 s_j = x_j 预测的最大值 - 最小值。更普遍的,s_j 是特征 j 的标准偏差。
做完这一系列的数据预处理之后,我们来看PCA算法
我们能从先前的视频看到,PCA所做的就是,它尝试着找到一个 低维 子空间,对数据进行投影,我们希望找到一个向量 u^(k) (比如,从 N 维将到 K 维),是的数据到这个向量的投影误差平方和最小。
给个提示,是什么减少了数据平均值的维度??
对于左边的例子,我们给定的样本 x^(i) 在 R^2 中(即,两个维度,x_1^(i), x_2^(i))。我们要做的就是在 R 中(一维)找到一个数据集 z^(i) 来代表我们原始的样本数据。所以,我们的均值从 2维 降到 1维。
所以,PCA要做的就是,要想出一个方法计算两个东西:
① 计算向量 u^(k)
② 计算 z^(i)
1,首先,我们要做的是计算这个“协方差(covariance matrix)”,通常用希腊字母 Σ。
① 希腊字母 Σ ,表示矩阵
② 累加和标记
‘ [U, S, V] = svd(Sigma); ’:计算 矩阵U = S 和 V 协方差矩阵sigma。
再补充一些细节:这个 协方差矩阵sigma,将会是一个 n*n 的矩阵。
矩阵U 的每一列就是 u^(i) ,即,u ∈ R^(n*n) 。所以,我们想减少数据的维度从 n 维 到 k 维,我们需要做的是提取前 k 个向量。u^1, … , u^k ,这给了我们 k 个方向(构成了一个 k维度的 子空间),即,我们想要投影数据的方向。
有了 u^k 后,我们要做的就是:x ∈ R^n ——> z ∈R^k
我们称 矩阵U 为 U_rece(n*k 矩阵)。这是 矩阵U 被降维的版本,我们将用它来对我们的数据进行降维。
z = (U_rece)^T * x
(U_rece)^T : k * n 矩阵
x 是 “n 维度向量(即,n * 1)”
所以,z 是 “k 维度向量”
在PCA算法中,我们将N维特征减少为K维特征。这个数字 K 是PCA算法的一个参数。这个数 K 也被称为 主成分的数字。或者,我们保留的主成分的数字。
在一般情况下,如何考虑选取这个参数 K ?
我们希望在平均均方误差与训练集方差的比例尽可能小的情况下选择尽可能小的k值。
如果我们希望这个比例小于1%,就意味着原本数据的方差有99%都保留下来了,如果我们选择保留95%的方差,便能非常显着地降低模型中特征的维度了。
99%、95%、90% 都是一些具有代表性的范围。
对于许多数据集,你会惊讶,为了保留99%的方差,你可以减少维度,但仍然保留大部分的方差。因为对于真实世界的数据来说,许多特征都是高度相关的。因此,结果证明:对数据进行很多压缩,仍然可以保留99%的方差。
那么该如何实现了?
但是,👆这个方法非常低效。
在以前的视频中,我谈论PCA作为压缩算法。在那里你可能需要把1000维的数据压缩100维特征,或具有三维数据压缩到一二维表示。所以,如果这是一个压缩算法,应该能回到这个压缩表示,回到你原有的高维数据的一种近似。
所以,给定的z (i),这可能100维,怎么回到你原来的表示x (i),这可能是1000维的数组?
我们可以把👆这个过程叫做:原始数据的重构。
我们常常使用PCA算法对监督学习算法进行加速。
假使我们正在针对一张 100×100像素的图片进行某个计算机视觉的机器学习,即总共有10000 个特征。
最后要注意的一点是,PCA所做的是定义一个从 x 到 z 的映射。这个从 x 到 z 的映射只能通过在训练集上运行PCA来得到。这个映射(注意,这里说的是映射,而不是PCA算法)也能够被应用在 交叉校验 和 测试集 上的其他样本中。(即,如果我们有交叉验证集合测试集,也采用对训练集学习而来的U_rece。 )
总结一下:当在运行PCA时,仅仅在训练集中的数据上运行,不能用在交叉验证和测试集上。但,当你定义了 x 到 z 的映射后,你可以应用这个映射到你的交叉验证集和你的测试集。
顺便说一下,实际上,在许多问题中我们确实能减少数据的维度,大概可以减少到 1/5 或者 1/10,而且仍然保留大部分的方差,几乎不影响性能。而且使用较低的维度数据,我们的学习算法通常可以运行的更快。
错误的主要成分分析情况:一个常见错误使用主要成分分析的情况是,将其用于减少过拟合(减少了特征的数量)。这样做非常不好,不如尝试正则化处理。原因在于PCA不需要使用标签y,它仅仅使用输入的 x^(i) ,使用它去寻找低纬数据,来近似你的数据。因此PCA会舍掉一些信息,它扔掉或减少数据的维度,不关心 y 值是什么。所以如果99%的方差信息被保留,你保留了大部分的方差,那么这样使用PCA是可以的。但是它也可能会丢掉一些有价值的信息。
事实证明,只使用正则化来防止过拟合常常会给你带来更好的结果。因为,当你应用 线性回归 或者 logistic回归 或其他的一些方法,进行正则化时,这个最小化问题,实际上是知道 y 的值的,所以不太可能损失掉一些有价值的信息。而PCA不使用标签,更有可能丢失一些有价值的信息。
因此,总结一下,使用PCA比较好的方式,是用它来提高学习算法的速度。但是使用PCA来防止过拟合,这不是PCA的一个好的运用。要使用正则化来防止过拟合。
另一个常见的错误是,默认地将主要成分分析作为学习过程中的一部分,这虽然很多时候有效果,最好还是从所有原始特征开始,只在有必要的时候(算法运行太慢或者占用太多内存)才考虑采用主要成分分析。