㈠ spss的5种常用的统计学方法
spss数据分析的五种方法:
1、线性模型;点击分析,一般线性模型,单变量,设置因变量和固定因子,点击确定即可。
2、图表分析。
3、回归分析;点击分析,打开回归,设置自变量和因变量数据,点击确定即可。
4、直方图分析。
5、统计分析。
1、线性模型
点击分析,一般线性模型,单变量,设置因变量和固定因子,点击确定,在结果窗口中查看线性模型的具体构建情况。
2、图表分析
点击菜单栏图形打开旧对话框,选择一种图表类型,选择简单散点图,点击定义,设置XY轴的数据列,点击确定,在输出窗口中查看图表结果。
3、回归分析
点击分析,打开回归,设置自变量和因变量数据,点击确定,在输出窗口中查看回归分析的结果。
4、直方图分析
点击图形,打开旧对话框,点击直方图,选择某一列变量,点击确定,在结果窗口中查看数据的分布趋势。
5、统计分析
点击分析,打开描述统计,进入描述,选择要分析的数据列,点击确定即可在输出窗口中查看数据的整体情况。
㈢ SPSS数据录入的几种方法
第一种方法:使用SPSS窗口录入数据
如果样本量不大,涉及变量不多,可以直接在SPSS窗口录入数据。
录入方法:打开SPSS后,选择窗口下方的【Data View】选项卡,即可直接在表格中录入数据,完成录入后存成 *.sav文件即可。
我用的是破解版,如下图:
第二种方法:用SPSS命令程序录入数据
使用SPSS命令程序录入数据,最基本的命令有四条:Data List、Variable Labels、Value Labels和Missing Values。利用这四条命令,可以编写一个SPSS数据录入的小程序并录入数据,最后得到SPSS软件可以直接使用的*.sav数据。
第三种方法:在Excel中录入数据
用户既可以在SPSS中打开需要分析的Excel文件,也可以在Excel中录入、保存,然后在SPSS中打开保存的Excel文件。在Excel中录入数据时,一般第一行录入变量,第二行开始录入数据,在录入完毕后,将文件保存为Excel默认格式(*.xlsx)即可。
使用Excel录入数据有以下几个特点:(1)不用补0,可以录入汉字,但速度较慢,适合于变量个数有限(几十个变量)的小样本数据录入;(2)可以进行各种计算,如数学与三角函数;(3)可以进行位置计算;(4)可以用Excel做辅助分析,进行数据变换;(5)可以非常方便地制作图表。
第四种方法:利用EpiData程序录入数据
EpiData是丹麦的一个非营利组织编写的用于数据录入的免费软件,要获得该软件,可以访问该软件主页(http://www.epidata.dk)。在小规模数据录入方面,目前使用较多的是EpiData3.1,其简洁、实用,并已基本实现汉化,极大方便了研究人员进行数据录入。
使用EpiData录入数据主要有6个步骤:(1)制作数据描述文件;(2)建立数据文件;(3)检查数据;(4)数据录入;(5)浏览数据文件资料;(6)导出数据。
㈣ spss的5种常用的统计学方法
spss数据分析的五种方法如下:
1、线性模型;点击分析,一般线性模型,单变量,设置因变量和固定因子,点击确定即可。
2、图表分析。
3、回归分析;点击分析,打开回归,设置自变量和因变量数据,点击确定即可。
4、直方图分析。
5、统计分析。
SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生Norman H. Nie、C. Hadlai (Tex) Hull 和 Dale H. Bent于1968年研究开发成功,同时成立了SPSS公司,并于1975年成立法人组织、在芝加哥组建了SPSS总部。
2009年7月28日,IBM公司宣布将用12亿美元现金收购统计分析软件提供商SPSS公司。如今SPSS已出至版本22.0,而且更名为IBM SPSS。迄今,SPSS公司已有40余年的成长历史。
可以预见,该模块的推出将会大大促进国内对复杂抽样时统计推断模型的正确应用。
㈤ spss如何用
简单的举个例子,spss在对于个人数据分析和结果处理方面来看
个人数据分析与结果处理(针对大学生的论文)
分析主要包括描述性分析、信度效度分析、相关分析、假设检验(回归分析)。在分析之前我们首先要懂得SPSS的分析原理。
用SPSS分析的问卷必须是李克特五、七级量表,新研究者建议设计五级单因素的量表。问卷数据收集完成,第一步要剔除无效问卷,保证数据的准确性。
分析步骤如下:
01、录入信息
打开SPSS软件,在变量界面输入问题及值,一般值为1代表非常不同意,2代表不同意,3代表不一定,4代表同意,5代表非常同意。
02、描述性分析
描述性分析是对被调查者的最基本的信息进行描述,如性别、学历、年龄、工等等。描述性分析主要对问卷的均值、标准差进行分析。
最后汇总了列成表格或图表,图表的项有频数、频率、均值、标准值等,加以文字说明,使结果清晰明了。
03、信度分析
信度分析主要是通过SPSS分析验证设计的问卷是否可靠,是否具有良好的相关性进行分析,收集数据是否存在矛盾、可靠等等。
问卷分析的步骤如下:点击“分析”----“标度”----“可靠性分析”-----“选择项”----“确定”
结果分析:问卷是否可靠关键在于:Alpha(a系数)
a<0.7则表示设计的问卷信度不可靠;
0.7<a<0.8则说明问卷具有一定的可靠性;
0.8<a<0.9则说明问卷信度很好;
04、效度分析和因子分析
通俗来说,效度分析是检验问卷题目与研究目的是否相一致。一般分为内容效度和结构效度;
内容效度是指题项与所测变量的适合性和逻辑相符性;
结构效度是指题项衡量所测变量的能力,实证分析着重分析结构效度,通过进行探索性因素分析(Exploratory factor analysis,EFA)检验来证明量表的结构有效性。
分析步骤如下:分析--降维--因子--将左边所有变量选到右边变量框中--描述--选择初始解和KMO--点击继续--提取--在提取里选择主成份和碎石图--继续--旋转--选择最大方差法。
得出结果如下:
结果分析:效度分析结果主要看KMO值和sig.(显着性);
若KMO>0.7,则说明问卷中设计的自变量之间具有一定的联系,问卷是有效的;
sig.<0.001说明该问卷符合做因子分析,下一步则可以进行因子分析(EFA)。
05、相关分析
相关分析前首先取各个因子的平均值。
步骤如下:分析--相关--双变量--将左边的变量选到右边--在皮尔逊和双变量前打勾--确定。
得出的结果如下:
假设前面两个为因子1、因子2(自变量),第三个为因变量。
相关性是检验自变量与因变量的关系。
可以看出因子1与因变量的相关系数为0.779,且sig.<0.001,说明自变量(因子1)与因变量呈正相关。
相关系数的取值范围介于-1~1之间,绝对值越大,表明变量之间的相关越为紧密。
06、回归分析
回归分析需要看的图有模型摘要图、ANOVA、系数图等等
步骤如下:分析--回归--线性--选择自变量和因变量--点击统计--选择德、共线性等--继续--选择XY变量--继续--保存--继续--确定。
模型摘要图主要看R方和德宾值(D-W),调整后的R方为0.684说明自变量对因变量的可解释程度为68.4%(R方代表的是自变量对因变量的解释能力,R方与调整后的R方越接近说明数据越稳定)。D-W值是检验自变量之间是否存在自相关,上图中D-W>2表示问卷中的几个自变量无自相关性,
即方差分析表,ANOVA表的一个作用就是验证假设(A对B不产生影响)是否成立,一般只看sig.值即可,上图sig.<0.01,说明拒绝原假设,至少有一个对因变量产生显着性影响。
下一步看系数表,系数表则说明有几个自变量对因变量产生显着性影响。
可以看出,相关性分析是检验自变量与因变量之间是否具有相关性(正向或反向相关),回归分析则说明了自变量对因变量是否具有显着性影响。
07、一些常见p的问题
1.在信度分析时,那个值该怎么写,问卷信度总是0.5多 ,怎么写?
信度分析主要看Alpha(a系数),a<0.7则表示设计的问卷信度不可靠,0.7<a<0.8则说明问卷具有一定的可靠性,0.8<a<0.9则说明问卷信度很好。0.5小于0.7说明问卷信度不可靠,接下来的分析也用不到了,建议调改问卷或数据。
2.如果两个变量的sig值为0.531,说明了什么?
SPSS的原理是假设A对B不产生影响,分析得出的结果P(sig.)<0.001/0.01/0.05,则假设不成立,即A对B具有显着性影响。如果sig.=0.531大于>0.05,说明假设成立,A对B(或B对A)不产生影响,任何一方变动都不会影响另一方。
上面是我对现在大学生而言,就怎么处理自己的论文,对自己论文进行数据处理和分析,希望对你有所帮助,谢谢阅读。