3月13日下午,南京邮电大学计算机学院、软件学院院长、教授李涛在CIO时代APP微讲座栏目作了题为《大数据时代的数据挖掘》的主题分享,深度诠释了大数据及大数据时代下的数据挖掘。
众所周知,大数据时代的大数据挖掘已成为各行各业的一大热点。
一、数据挖掘
在大数据时代,数据的产生和收集是基础,数据挖掘是关键,数据挖掘可以说是大数据最关键也是最基本的工作。通常而言,数据挖掘也称为DataMining,或知识发现Knowledge Discovery from Data,泛指从大量数据中挖掘出隐含的、先前未知但潜在的有用信息和模式的一个工程化和系统化的过程。
不同的学者对数据挖掘有着不同的理解,但个人认为,数据挖掘的特性主要有以下四个方面:
1.应用性(A Combination of Theory and Application):数据挖掘是理论算法和应用实践的完美结合。数据挖掘源于实际生产生活中应用的需求,挖掘的数据来自于具体应用,同时通过数据挖掘发现的知识又要运用到实践中去,辅助实际决策。所以,数据挖掘来自于应用实践,同时也服务于应用实践,数据是根本,数据挖掘应以数据为导向,其中涉及到算法的设计与开发都需考虑到实际应用的需求,对问题进行抽象和泛化,将好的算法应用于实际中,并在实际中得到检验。
2.工程性(An Engineering Process):数据挖掘是一个由多个步骤组成的工程化过程。数据挖掘的应用特性决定了数据挖掘不仅仅是算法分析和应用,而是一个包含数据准备和管理、数据预处理和转换、挖掘算法开发和应用、结果展示和验证以及知识积累和使用的完整过程。而且在实际应用中,典型的数据挖掘过程还是一个交互和循环的过程。
3.集合性(A Collection of Functionalities):数据挖掘是多种功能的集合。常用的数据挖掘功能包括数据探索分析、关联规则挖掘、时间序列模式挖掘、分类预测、聚类分析、异常检测、数据可视化和链接分析等。一个具体的应用案例往往涉及多个不同的功能。不同的功能通常有不同的理论和技术基础,而且每一个功能都有不同的算法支撑。
4.交叉性(An Interdisciplinary Field):数据挖掘是一门交叉学科,它利用了来自统计分析、模式识别、机器学习、人工智能、信息检索、数据库等诸多不同领域的研究成果和学术思想。同时一些其他领域如随机算法、信息论、可视化、分布式计算和最优化也对数据挖掘的发展起到重要的作用。数据挖掘与这些相关领域的区别可以由前面提到的数据挖掘的3个特性来总结,最重要的是它更侧重于应用。
综上所述,应用性是数据挖掘的一个重要特性,是其区别于其他学科的关键,同时,其应用特性与其他特性相辅相成,这些特性在一定程度上决定了数据挖掘的研究与发展,同时,也为如何学习和掌握数据挖掘提出了指导性意见。如从研究发展来看,实际应用的需求是数据挖掘领域很多方法提出和发展的根源。从最开始的顾客交易数据分析(market basket analysis)、多媒体数据挖掘(multimedia data mining)、隐私保护数据挖掘(privacy-preserving data mining)到文本数据挖掘(text mining)和Web挖掘(Web mining),再到社交媒体挖掘(social media mining)都是由应用推动的。工程性和集合性决定了数据挖掘研究内容和方向的广泛性。其中,工程性使得整个研究过程里的不同步骤都属于数据挖掘的研究范畴。而集合性使得数据挖掘有多种不同的功能,而如何将多种功能联系和结合起来,从一定程度上影响了数据挖掘研究方法的发展。比如,20世纪90年代中期,数据挖掘的研究主要集中在关联规则和时间序列模式的挖掘。到20世纪90年代末,研究人员开始研究基于关联规则和时间序列模式的分类算法(如classification based on association),将两种不同的数据挖掘功能有机地结合起来。21世纪初,一个研究的热点是半监督学习(semi-supervised learning)和半监督聚类(semi-supervised clustering),也是将分类和聚类这两种功能有机结合起来。近年来的一些其他研究方向如子空间聚类(subspace clustering)(特征抽取和聚类的结合)和图分类(graph classification)(图挖掘和分类的结合)也是将多种功能联系和结合在一起。最后,交叉性导致了研究思路和方法设计的多样化。
前面提到的是数据挖掘的特性对研究发展及研究方法的影响,另外,数据挖掘的这些特性对如何学习和掌握数据挖掘提出了指导性的意见,对培养研究生、本科生均有一些指导意见,如应用性在指导数据挖掘时,应熟悉应用的业务和需求,需求才是数据挖掘的目的,业务和算法、技术的紧密结合非常重要,了解业务、把握需求才能有针对性地对数据进行分析,挖掘其价值。因此,在实际应用中需要的是一种既懂业务,又懂数据挖掘算法的人才。工程性决定了要掌握数据挖掘需有一定的工程能力,一个好的数据额挖掘人员首先是一名工程师,有很强大的处理大规模数据和开发原型系统的能力,这相当于在培养数据挖掘工程师时,对数据的处理能力和编程能力很重要。集合性使得在具体应用数据挖掘时,要做好底层不同功能和多种算法积累。交叉性决定了在学习数据挖掘时要主动了解和学习相关领域的思想和技术。
因此,这些特性均是数据挖掘的特点,通过这四个特性可总结和学习数据挖掘。
二、大数据的特征
大数据(bigdata)一词经常被用以描述和指代信息爆炸时代产生的海量信息。研究大数据的意义在于发现和理解信息内容及信息与信息之间的联系。研究大数据首先要理清和了解大数据的特点及基本概念,进而理解和认识大数据。
研究大数据首先要理解大数据的特征和基本概念。业界普遍认为,大数据具有标准的“4V”特征:
1.Volume(大量):数据体量巨大,从TB级别跃升到PB级别。
2.Variety(多样):数据类型繁多,如网络日志、视频、图片、地理位置信息等。
3.Velocity(高速):处理速度快,实时分析,这也是和传统的数据挖掘技术有着本质的不同。
4.Value(价值):价值密度低,蕴含有效价值高,合理利用低密度价值的数据并对其进行正确、准确的分析,将会带来巨大的商业和社会价值。
上述“4V”特点描述了大数据与以往部分抽样的“小数据”的主要区别。然而,实践是大数据的最终价值体现的唯一途径。从实际应用和大数据处理的复杂性看,大数据还具有如下新的“4V”特点:
5.Variability(变化):在不同的场景、不同的研究目标下数据的结构和意义可能会发生变化,因此,在实际研究中要考虑具体的上下文场景(Context)。
6.Veracity(真实性):获取真实、可靠的数据是保证分析结果准确、有效的前提。只有真实而准确的数据才能获取真正有意义的结果。
7.Volatility(波动性)/Variance(差异):由于数据本身含有噪音及分析流程的不规范性,导致采用不同的算法或不同分析过程与手段会得到不稳定的分析结果。
8.Visualization(可视化):在大数据环境下,通过数据可视化可以更加直观地阐释数据的意义,帮助理解数据,解释结果。
综上所述,以上“8V”特征在大数据分析与数据挖掘中具有很强的指导意义。
三、大数据时代下的数据挖掘
在大数据时代,数据挖掘需考虑以下四个问题:
大数据挖掘的核心和本质是应用、算法、数据和平台4个要素的有机结合。
因为数据挖掘是应用驱动的,来源于实践,海量数据产生于应用之中。需用具体的应用数据作为驱动,以算法、工具和平台作为支撑,最终将发现的知识和信息应用到实践中去,从而提供量化的、合理的、可行的、且能产生巨大价值的信息。
挖掘大数据中隐含的有用信息需设计和开发相应的数据挖掘和学习算法。算法的设计和开发需以具体的应用数据作为驱动,同时在实际问题中得到应用和验证,而算法的实现和应用需要高效的处理平台,这个处理平台可以解决波动性问题。高效的处理平台需要有效分析海量数据,及时对多元数据进行集成,同时有力支持数据化对算法及数据可视化的执行,并对数据分析的流程进行规范。
总之,应用、算法、数据、平台这四个方面相结合的思想,是对大数据时代的数据挖掘理解与认识的综合提炼,体现了大数据时代数据挖掘的本质与核心。这四个方面也是对相应研究方面的集成和架构,这四个架构具体从以下四个层面展开:
应用层(Application):关心的是数据的收集与算法验证,关键问题是理解与应用相关的语义和领域知识。
数据层(Data):数据的管理、存储、访问与安全,关心的是如何进行高效的数据使用。
算法层(Algorithm):主要是数据挖掘、机器学习、近似算法等算法的设计与实现。
平台层(Infrastructure):数据的访问和计算,计算平台处理分布式大规模的数据。
综上所述,数据挖掘的算法分为多个层次,在不同的层面有不同的研究内容,可以看到目前在做数据挖掘时的主要研究方向,如利用数据融合技术预处理稀疏、异构、不确定、不完整以及多来源数据;挖掘复杂动态变化的数据;测试通过局部学习和模型融合所得到的全局知识,并反馈相关信息给预处理阶段;对数据并行分布化,达到有效使用的目的。
四、大数据挖掘系统的开发
1.背景目标
大数据时代的来临使得数据的规模和复杂性都出现爆炸式的增长,促使不同应用领域的数据分析人员利用数据挖掘技术对数据进行分析。在应用领域中,如医疗保健、高端制造、金融等,一个典型的数据挖掘任务往往需要复杂的子任务配置,整合多种不同类型的挖掘算法以及在分布式计算环境中高效运行。因此,在大数据时代进行数据挖掘应用的一个当务之急是要开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
之前提到一个数据挖掘有多种任务、多种功能及不同的挖掘算法,同时,需要一个高效的平台。因此,大数据时代的数据挖掘和应用的当务之急,便是开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
2.相关产品
现有的数据挖掘工具
有Weka、SPSS和SQLServer,它们提供了友好的界面,方便用户进行分析,然而这些工具并不适合进行大规模的数据分析,同时,在使用这些工具时用户很难添加新的算法程序。
流行的数据挖掘算法库
如Mahout、MLC++和MILK,这些算法库提供了大量的数据挖掘算法。但这些算法库需要有高级编程技能才能进行任务配置和算法集成。
最近出现的一些集成的数据挖掘产品
如Radoop和BC-PDM,它们提供友好的用户界面来快速配置数据挖掘任务。但这些产品是基于Hadoop框架的,对非Hadoop算法程序的支持非常有限。没有明确地解决在多用户和多任务情况下的资源分配。
3.FIU-Miner
为解决现有工具和产品在大数据挖掘中的局限性,我们团队开发了一个新的平台——FIU-Miner,它代表了A Fast,Integrated,and User-Friendly System for Data Miningin Distributed Environment。它是一个用户友好并支持在分布式环境中进行高效率计算和快速集成的数据挖掘系统。与现有数据挖掘平台相比,FIU-Miner提供了一组新的功能,能够帮助数据分析人员方便并有效地开展各项复杂的数据挖掘任务。
与传统的数据挖掘平台相比,它提供了一些新的功能,主要有以下几个方面:
A.用户友好、人性化、快速的数据挖掘任务配置。基于“软件即服务”这一模式,FIU-Miner隐藏了与数据分析任务无关的低端细节。通过FIU-Miner提供的人性化用户界面,用户可以通过将现有算法直接组装成工作流,轻松完成一个复杂数据挖掘问题的任务配置,而不需要编写任何代码。
B.灵活的多语言程序集成。允许用户将目前最先进的数据挖掘算法直接导入系统算法库中,以此对分析工具集合进行扩充和管理。同时,由于FIU-Miner能够正确地将任务分配到有合适运行环境的计算节点上,所以对这些导入的算法没有实现语言的限制。
C.异构环境中有效的资源管理。FIU-Miner支持在异构的计算环境中(包括图形工作站、单个计算机、和服务器等)运行数据挖掘任务。FIU-Miner综合考虑各种因素(包括算法实现、服务器负载平衡和数据位置)来优化计算资源的利用率。
D.有效的程序调度和执行。
应用架构上包括用户界面层、任务和系统管理层、逻辑资源层、异构的物理资源层。这种分层架构充分考虑了海量数据的分布式存储、不同数据挖掘算法的集成、多重任务的配置及系统用户的交付功能。一个典型的数据挖掘任务在应用之中需要复杂的主任务配置,整合多种不同类型的挖掘算法。因此,开发和建立这样的计算平台和工具,支持应用领域的数据分析人员进行有效的分析是大数据挖掘中的一个重要任务。
FIU-Miner系统用在了不同方面:如高端制造业、仓库智能管理、空间数据处理等,TerraFly GeoCloud是建立在TerraFly系统之上的、支持多种在线空间数据分析的一个平台。提供了一种类SQL语句的空间数据查询与挖掘语言MapQL。它不但支持类SQL语句,更重要的是可根据用户的不同要求,进行空间数据挖掘,渲染和画图查询得到空间数据。通过构建空间数据分析的工作流来优化分析流程,提高分析效率。
制造业是指大规模地把原材料加工成成品的工业生产过程。高端制造业是指制造业中新出现的具有高技术含量、高附加值、强竞争力的产业。典型的高端制造业包括电子半导体生产、精密仪器制造、生物制药等。这些制造领域往往涉及严密的工程设计、复杂的装配生产线、大量的控制加工设备与工艺参数、精确的过程控制和材料的严格规范。产量和品质极大地依赖流程管控和优化决策。因此,制造企业不遗余力地采用各种措施优化生产流程、调优控制参数、提高产品品质和产量,从而提高企业的竞争力。
在空间数据处理方面,TerraFly GeoCloud对多种在线空间数据分析。对传统数据分析而言,其难点在于MapQL语句比较难写,任务之间的关系比较复杂,顺序执行之间空间数据分许效率较低。而FIU-Miner可有效解决以上三个难点。
总结而言,大数据的复杂特征对数据挖掘在理论和算法研究方面提出了新的要求和挑战。大数据是现象,核心是挖掘数据中蕴含的潜在信息,并使它们发挥价值。数据挖掘是理论技术和实际应用的完美结合。数据挖掘是理论和实践相结合的一个例子。
-
-
② 数据的调查收集一般可以数据的调查收集一般可以分为六个,分别是哪个步骤
数据的调查收集的六个步骤:1、明确调查问题;2、确定调查对象;3、选择调查方法;4、展开调查;5、记录结果;6、得出结论。
调查好处与特点:
1.全面调查:对需要调查的对象进行逐个调查。
好处:所得资料较为全面可靠。
特点:调查花费的人力、物力、财力较多,且调查时间较长,全面调查只在样本很少的情况下适合采用。
2.抽样调查:是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
好处:耗费的人力,物力,财力少,大量节约调查时间。
特点:
1、按随机原则抽选样本。
2、总体中每一个单位都有一定的概率被抽中。
3、可以用一定的概率来保证将误差控制在规定的范围之内。
4、适合样本数量较多的情况下采用。
数据的收集方法6种:1、访问调查。2、网络信息收集法。3、观察法。4、实验法。5、观察法,包括对人的行为的观察和对客观事物的观察。6、文献检索法,分为手工检索和计算机检索。网络信息是指通过计算机网络发布、传递和存储的各种信息。收集网络信息的最终目标是给广大用户提供网络信息资源服务。观察法是通过开会、深入现场、参加生产和经营、实地采样、进行现场观察并准确记录(包括测绘、录音、录相、拍照、笔录等)调研情况。访问调查法是调查者与被调查者通过面对面地交谈从而得到所需资料的调查方法。实验方法能通过实验过程获取其他手段难以获得的信息或结论。
③ 网络信息的检索方法有哪几种
1、漫游法。
2、直接查找法
3、搜索引擎检索法。
4、网络资源指南检索法。
④ 信息收集的方法有哪些
1.查阅资料法:报纸、行业网站、文献、杂志、广播电视等传媒专访。
2.调查法:
1)拜访调查法;
2)电话采访法;
3)问卷调查法。
3.观察法:通过开会、深入现场、参加生产和经营、实地采样、进行现场观察并准确记录(包括测绘、录音、录相、拍照、笔录等)调研情况。主要包括两个方面:一是对人的行为的观察,二是对客观事物的观察。观察法应用很广泛,常和询问法、搜集实物结合使用,以提高所收集信息的可靠性。
4.实验法:通过实验室实验、现场实验、计算机模拟实验、计算机网络环境下人机结合实验等过程获取信息或结论。可主动控制实验条件,包括对参与者类型的恰当限定、对信息产生条件的恰当限定和对信息产生过程的合理设计,获得重要的、能客观反映事物运动表征的有效信息,在一定程度上直接观察研究某些参量之间的相互关系,有利于对事物本质的研究。
5.互联网信息收集法:通过计算机网络发布、传递和存储的各种信息。互联网信息收集的最终目标是给广大用户提供网络信息资源服务,整个过程包括网络信息搜索、整合、保存和服务四个步骤。
⑤ 社会网络分析的内容简介
本书的内容结构是,除前言外共分为八章,分别介绍社会网络分析的基本原理和理论、社会网络资料类型和收集方法、网络分析的各种技术与方法、社会网络分析的应用等内容。
第一章
首先追溯了西方社会网络分析的思想渊源,对国内外的研究状况做了系统回顾,介绍了社会网络分析的一些新进展。社会网络分析有不同的学科发展背景,其发展也经历了不同的阶段。我们通过回顾社会网络分析思想与方法在西方的发展,梳理出其中的主要线索和问题,并结合国内的研究状况进行探讨,目的在于强调更好地借鉴已有的成果,加强对社会网络分析的认识和应用。
第二章
系统说明了社会网络分析的基本原理。社会网络分析作为一种独立的社会研究方法,已形成了自己的理论基础和方法论原则。通过这些方面我们可以认识社会网络分析方法的特征及其独特之处。在本章中我们在说明社会网络分析概念的基础上,具体介绍了社会网络分析的方法论原理和研究程序。
第三章
主要说明社会网络分析所用的数据资料具有自己的类型与特征,它是一组反映行动者关系的信息。社会网络资料首先是关于社会关系的数据信息,简称关系数据。关系数据不同于属性数据,不仅其本质内容不同,其表达形式也不同。本章在介绍了社会网络资料的概念和类型基础上,结合研究设计具体说明了社会网络的测量及其收集方法。
第四章
主要介绍社会网络分析的研究技术与方法。社会网络最基本的数学表达形式是图论法和矩阵法。图论法是以线和点的形式来表示行动者及其关系的一种方法。用社群图可表示社会关系的结构、特征等属性。矩阵法是把社会网络中的每一个结点或关系分别按行和列的方式排列即可形成网络矩阵,包括邻接矩阵、关联矩阵等。矩阵法可以对群体关系进行具体分析。
第五章
是关于社会网络的中心度分析。中心度是我们认识社会网络中行动者位置及其关系的重要概念,具有广泛的应用性。本章首先介绍了中心度、中心势概念,重点说明了结点中心度、紧密中心度、间距中心度及其测量方法。最后又对社会网络中与等级密切相关的权力和声望作了分析。网络中的声望不同于一般意义的社会声望概念,这里主要说明了接近度声望概念及其测量。
第六章
是关于社会网络分析中的子群研究。构成社会网络的基本元素就是行动者及其群体,社会中存在着各种各样的子群,它们相互结合形成了复杂的社会结构。本章首先从社会群体、子群概念出发,说明各种团聚性的子群及其测量方法,包括“团伙”、n-团伙、n-宗派、k-丛等,最后分析隶属性群体。
第七章
是关于网络中的位置和角色的分析。在社会结构分析中,位置和角色是两个重要的概念。本章在简要介绍了网络分析的位置和角色概念之后,主要说明了结构等价性、自同构等价性和正则等价性及其不同的测量方法,最后一节简要介绍了关系代数法和统计模型法。位置和角色分析是目前社会网络分析中数量化分析程度最高的方面,已应用和发展出了许多不同的数学分析方法。本章结合例子简要介绍了聚类法、统计模型法等。这些分析方法现在都可借助于有关的分析软件来应用。
第八章
讨论了社会网络分析的一些应用。社会网络分析具有非常广泛的应用,其应用领域已远远超出了社会学和人类学的传统范围,如小群体关系、社会支持网等,而且扩展到了人文社会科学甚至工程技术科学的诸多领域。但本书只是简要分析了与社会网络分析密切相关的社会资本研究以及体现中国社会结构特征的“关系”研究。
本书最后在附录中介绍了社会网络分析软件包的应用,重点说明了Pajek 的内容及使用方法。附录中还附有两个不同的各具代表性的《社会网络分析》教学大纲,供读者参考比较。
⑥ 收集数据的常用方法有哪些
统计数据收集方法:直接观察法、采访法(又分为面访式、电话式、自填式)、通讯法、网络调查法、卫星遥感法。
1、直接观察法
调查人员到现场对调查对象进行观察、 计量和登记以取得资料的方法。调查人员对所观察的事件或行为不加以控制或干涉,能够在被调查者不察觉的情况下获得资料。
2、采访法
面访式:个别深度访谈。
一次只有一名受访者参加、针对特殊问题的调查。
适合于较隐秘的问题,如个人隐私问题;或较敏感的问题。
统计数据
是统计工作活动过程中所取得的反映国民经济和社会现象的数字资料以及与之相联系的其他资料的总称。统计数据是对现象进行测量的结果。比如, 对经济活动总量的测量可以得到国内生产总值(GDP)数据;对股票价格变动水平的测量可以得到股票价格指数的数据;对人口性别的测量可以得到男或女这样的数据。
⑦ 社会热点问题分析:分析方法有哪些和热点舆情问题分析数据怎么获取
社会热点问题分析以及数据获取方法:
第一,当某个舆情因变
事项发生后,你应当从不同角度去思考问题,从不同侧面去分析问题。只有多角度研究、多方面思考,才能选准主题的切入点。
第二,对网络舆情信息的文档选择和摘要可以通过人工去实现,也可以通过开发的应用程序由机器系统辅助实现。如蚁坊软件的智能化网络舆情分析应用系统中含有自动文档摘要、数据收集分析功能。
第三,大数据舆情分析研判是舆情工作者通过收集分析互联网上关于社会热点或网民关注焦点事件的大量消息报道,发掘背后隐藏关系,进而预测事态发展趋势,为舆情事件处置提供决策参考。
⑧ 网络时代你该如何利用软件快速收集有效信息
拿乐思网络信息采集系统为例,主要功能为:根据用户自定义的任务配置,批量而精确地抽取因特网目标网页中的半结构化与非结构化数据,转化为结构化的记录,保存在本地数据库中,用于内部使用或外网发布,快速实现外部信息的获取。乐思网络信息采集系统可用于:门户网站新闻采集,行业资讯采集,竞争情报获取,数据库营销等领域。
信息采集软件可对原始信息加以收集汇总,利用一定算法进行处理,最后提供增值的信息服务。那么在当今资讯发达的网络时代,如何才能合理利用软件快速、全面、准确的收集到对工作有参考价值的信息资料呢?
首先,理顺信息收集目的。
要弄清楚:收集信息资料是为了达成什么目的?要从这些信息资料得到什么结论?大概需要哪几个方面的信息资料?需要多长时间来收集?在收集各类信息时,要有严谨认真的态度。信息收集也要讲求“轻重缓急”,没有完成目的的意识,收集的信息就不具有任何意义。
其次,明确资料收集方向。
这样做的好处,就是收集到的信息资料更全面、系统,有利于整合。就比如,我们在服务某一客户时,往往需要收集行业趋势、市场环境、客户背景、客户竞争对手的信息资料等等。
第三、明确信息收集途径。
想清楚了自己需要什么,接下来就是清楚自己在哪能得到这些信息。如各种搜索引擎、行业网站、行业论坛、客户和竞争对手网站等等。
第四、及时调整收集任务。
信息的收集往往难以一次性完成,要善于发现和获取那些先兆性强、信息量大的信息资料;及时调整工作任务,在需要时进行补充性收集和追踪收集,以保证信息加工的需要,提高信息的质量。
第五、整合分析信息资料。
这一阶段主要是将收集来的信息资料及时汇总、分类、梳理,如调查报告,资料摘编、统计报表、情况反映等,送交信息加工部门。面对纷繁复杂的信息和事务,最需要的就是如何运用适当的思维方法和思维技巧对这些信息进行分析、归纳、判断和运用。未来的竞争完全可以理解为信息收集、运用、处理能力的竞争。
信息的收集不是一日之功,日积月累、坚持不懈才会有最终的收获。在当前经济社会中,信息具有极高的价值,越多地掌握信息就越能准确地预判出事物发展的趋势与结果,做出抉择时面临的风险也会降到最低。
⑨ 如何收集数据
问题一:大数据怎么收集 大数据分析处理解决方案
方案阐述
每天,中国网民通过人和人的互动,人和平台的互动,平台与平台的互动,实时生产海量数据。这些数据汇聚在一起,就能够获取到网民当下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。
数亿网民实时留下的痕迹,可以真实反映当下的世界。微观层面,我们可以看到个体们在想什么,在干什么,及时发现舆情的弱信号。宏观层面,我们可以看到当下的中国正在发生什么,将要发生什么,以及为什么?借此可以观察舆情的整体态势,洞若观火。
原本分散、孤立的信息通过分析、挖掘具有了关联性,激发了智慧感知,感知用户真实的态度和需求,辅助 *** 在智慧城市,企业在品牌传播、产品口碑、营销分析等方面的工作。
所谓未雨绸缪,防患于未然,最好的舆情应对处置莫过于让舆情事件不发生。除了及时发现问题,大数据还可以帮我们预测未来。具体到舆情服务,舆情工作人员除了对舆情个案进行数据采集、数据分析之外,还可以通过大数据不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,通过对同类型舆情事件历史数据,及影响舆情演进变化的其他因素进行大数据分析,提炼出相关舆情的规律和特点。
大数据时代的舆情管理不再局限于危机解决,而是梳理出危机可能产生的各种条件和因素,以及从负面信息转化成舆情事件的关键节点和衡量指标,增强我们对同类型舆情事件的认知和理解,帮助我们更加精准的预测未来。
用大数据引领创新管理。无论是 *** 的公共事务管理还是企业的管理决策都要用数据说话。 *** 部门在出台社会规范和政策时,采用大数据进行分析,可以避免个人意志带来的主观性、片面性和局限性,可以减少因缺少数据支撑而带来的偏差,降低决策风险。通过大数据挖掘和分析技术,可以有针对性地解决社会治理难题;针对不同社会细分人群,提供精细化的服务和管理。 *** 和企业应建立数据库资源的共享和开放利用机制,打破部门间的“信息孤岛”,加强互动反馈。通过搭建关联领域的数据库、舆情基础数据库等,充分整合外部互联网数据和用户自身的业务数据,通过数据的融合,进行多维数据的关联分析,进而完善决策流程,使数据驱动的社会决策与科学治理常态化,这是大数据时代舆情管理在服务上的延伸。
解决关键
如何能够快速的找到所需信息,采集是大数据价值挖掘最重要的一环,其后的集成、分析、管理都构建于采集的基础,多瑞科舆情数据分析站的采集子系统和分析子系统可以归类热点话题列表、发贴数量、评论数量、作者个数、敏感话题列表自动摘要、自动关键词抽取、各类别趋势图表;在新闻类报表识别分析归类: 标题、出处、发布时间、内容、点击次数、评论人、评论内容、评论数量等;在论坛类报表识别分析归类: 帖子的标题、发言人、发布时间、内容、回帖内容、回帖数量等。
解决方案
多瑞科舆情数据分析站系统拥有自建独立的大数据中心,服务器集中采集对新闻、论坛、微博等多种类型互联网数据进行7*24小时不间断实时采集,具备上千亿数据量的数据索引、挖掘分析和存储能力,支撑 *** 、企业、媒体、金融、公安等多行业用户的舆情分析云服务。因此多瑞科舆情数据分析站系统在这方面有着天然优势,也是解决信息数量和信息(有价值的)获取效率之间矛盾的唯一途径,系统利用各种数据挖掘技术将产生人工无法替代的效果,为市场调研工作节省巨大的人力经费开支。
实施收益
多瑞科舆情数据分析站系统可通过对大数据实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
系统实施
系统主要应用于负责信......>>
问题二:如何进行数据采集以及数据分析 推荐使用数据统计工具,通过监测工具,对数据进行全面的采集,并根据需要进行不同维度的分析。99click的数据监测工具比较全面,可以尝试一下。
问题三:数据怎么收集?数据怎样管理? 建立数据库;
若果不明白,尝试做表格,拆分数据不同的特性,组合相关的特性;
老师做成绩表也是一种数据库;
可以先尝试使用excel做表格,分析相关和非相关特性;整理出来,后期想自己深入就去学数据库,不想学可以外包,让别人做,然后做数据查询软件等等……
问题四:如何收集用户体验数据 通过自己网站的注册用户,通过微信公众号的后台就可以看到数据,
好多地方都是可以的,你只要去查就能查到的,谢谢希望我的回答对你有帮助!
问题五:怎样收集市场数据 1.卖场获取市场总体数据好地方卖场几乎荟萃了市场的主要消费品种,可以说是微缩的市场风向标,是市场信息荟萃之处。在卖场收集数据可以通过这么三类人进行调查:(1)促销员可以派人应聘成为该卖场的促销员,走内部路线,以便接触并拉近与卖场营业员、柜组长、财务、仓库等人员的关系,以闲聊、公司盘库、核对提成等名义收集轻而易举。(2)仓库保管员一般在卖场里,这些保管人员的地位不是很高,但他们手里却掌握着准确的实际进货量、库存数、退货等情况。与这些人员搞好关系,数据收集轻而易举。(3)收银员卖场收银台一般都固定配备一两个收银员,每个收银台的情况基本相似。因此,稍加计算,即可得出该卖场各阶段大致的实际销售状况。2.解密竞争对手数据捷径(1)广告公司每个竞争对手都有几家关系较好或是长期合作的广告公司,广告公司的业务人员很容易就能接近竞争品牌的分支机构管理人员以及一些内部文件,控制得当,这完全可以作为一个准确迅速的信息来源。(2)二三级分销商各厂家分支机构总会有一两个关系好沟通密切的二三级分销商,有关市场动向,这些关系特殊的二三级分销商也许知道更早。业务人员对这些特殊客户在拜访时多加留心,也可获取一些对手资料。(3)运输、仓储、装卸公司竞争对手在当地无论是直营还是交给经销商做,仓储、运输、装卸等物流环节都必不可少。而一般仓储运输公司不会在意对客户储运量数据的保密,有的甚至就挂在办公室里。以看库的名义很容易就能进入竞争对手的储运仓库,只要看看货堆上的到发货记录卡,一切数据轻松到手。(4)打印店各厂家的办事分机构基本都会有定点的打印店。为节省时间,量较大的打印、复印工作,或是复杂一些的图形表格制作,都会拿到这些打印店来做。
问题六:收集数据的方法有什么 收集数据的方式有很多,常见的如问卷调查、查阅资料、实地考查、试验.
不同的数据收集的也是不一样的具体的就要看你这么调查和调查对象是什么。
问卷调查是现在就常用的而且我要调查网就可以做网络问卷调查
查阅资料就需要去查找网络相应的资料信息或者到图书馆去
实地考查就是你自己亲身体验
问题七:怎样获得大数据? 很多数据都是属于企业的商业秘密来的,你要做大数据的一些分析,需要获得海量的数据源,再此基础上进行挖掘,互联网有很多公开途径可以获得你想要的数据,通过工具可以快速获得,比如说象八爪鱼采集器这样的大数据工具,都可以帮你提高工作效率并获得海量的数据采集啊
问题八:企业怎样快速收集数据 要快速收集数据就需要去众包
问题九:如何在网上做数据收集和数据分析,并做出图文并茂的数据分析图? 提供一些技术建议:
数据采集,数据清洗,数据加工,数据建模,分析,得出结果。
数据采集需要将网站的招聘数据采集下来,可能需要大量的数据,并且是相当一段时间的数据,不能是一个短时间的数据;
数据清洗:将垃圾数据和不规范的数据进行处理,要分析,肯定会有很多分析的维度,分类什么的,要统一;
数据加工:将不规范的数据进行二次处理,统一规则;
数据建模:可简可繁,根据实际情况建模吧,首次做还是简单点
分析得出结果:这就简单了,根据已有数据输出数据样本;
数据采集:可用网络矿工采集器,可实现采集和数据的初步加工
ETL工具可用 KETTLE ,开源的
数据库,自己选择吧,比较多
输出数据:可以自己来做,也可以选择第三方的,不过无论如何也许用点工具,简单的话,用excel
问题十:易企秀的收集数据怎么看到? 登录到易企秀帐户,在相应场景下有收集数据菜单,点击收集数据后的条数,就可以查看收集数据。
⑩ 质量管理常见的收集数据的方法有
质量管理常见的收集数据的方法有问卷调查法、访谈调查法、观察调查法、文献调查法、网络调查法等。问卷调查法:是指通过制定详细周密的问卷,要求被调查者据此进行回答以收集资料的方法。访谈调查法:是社会调查中最古老、最常用的方法之一。通过与调查对象进行交谈,收集口头资料的一种调查方法。
质量管理常见的收集数据的方法有问卷调查法、访谈调查法、观察调查法、文献调查法、网络调查法等。
1、问卷调查法:是指通过制定详细周密的问卷,要求被调查者据此进行回答以收集资料的方法。
2、访谈调查法:是社会调查中最古老、最常用的方法之一。通过与调查对象进行交谈,收集口头资料的一种调查方法。
3、观察调查法:观察调查法主要观察人们的行为、态度和情感,系统地记录人、物体或者事件的行为模式的过程。
4、文献调查法:通过寻找文献搜集有关市场信息的调查方法,它是一种间接的非介入式的市场调查方法。
5、网络调查法:通过互联网、计算机通信和数字交互式媒体,了解和掌握信息的方式。