化学计算是中学化学的一个难点和重点,要掌握化学计算,应了解中学化学计算的类型,不同类型解题方法是有所不同的,因此我把中学化学中出现的解题方法归纳如下,每种类型都举例加以说明。
一、守恒法
化学反应的实质是原子间重新组合,依据质量守恒定律在化学反应中存在一系列守恒现象,如:质量守恒、元素守恒、电荷守恒、电子得失守恒等,利用这些守恒关系解题的方法叫做守恒法。
(一)质量守恒法
质量守恒就是化学反应前后各物质的质量总和不变,在配制或稀释溶液的过程中,溶质的质量不变。
【例题】1500C时,碳酸铵完全分解产生气态混合物,其密度是相同条件下氢气密度的
(A)96倍 (B)48倍 (C)12倍 (D)32倍
【分析】(NH4)2CO3=2NH3↑+H2O↑+CO2↑ 根据质量守恒定律可知混和气体的质量等于碳酸铵的质量,从而可确定混和气体的平均分子量为 =24 ,混和气体密度与相同条件下氢气密度的比为 =12 ,所以答案为C
(二)元素守恒法
元素守恒即反应前后各元素种类不变,各元素原子个数不变,其物质的量、质量也不变。
【例题】有一在空气中放置了一段时间的KOH固体,经分析测知其含水2.8%、含K2CO337.3% 取1克该样品投入25毫升2摩/升的盐酸中后,多余的盐酸用1.0摩/升KOH溶液30.8毫升恰好完全中和,蒸发中和后的溶液可得到固体
(A)1克 (B)3.725克 (C)0.797克 (D)2.836克
【分析】KOH、K2CO3跟盐酸反应的主要产物都是KCl,最后得到的固体物质是KCl,根据元素守恒,盐酸中含氯的量和氯化钾中含氯的量相等,所以答案为B
(三)电荷守恒法
电荷守恒即对任一电中性的体系,如化合物、混和物、溶液等,电荷的代数和为零,即正电荷总数和负电荷总数相等。
【例题】在Na2SO4和K2SO4的混和溶液中,如果[Na+]=0.2摩/升,[SO42-]=x摩/升 ,[K+]=y摩/升,则x和y的关系是
(A)x=0.5y (B)x=0.1+0.5y (C)y=2(x-0.1) (D)y=2x-0.1
【分析】可假设溶液体积为1升,那么Na+物质的量为0.2摩,SO42-物质的量为x摩,K+物质的量为y摩,根据电荷守恒可得[Na+]+[K+]=2[SO42-],所以答案为BC
(四)电子得失守恒法
电子得失守恒是指在发生氧化—还原反应时,氧化剂得到的电子数一定等于还原剂失去的电子数,无论是自发进行的氧化—还原反应还是原电池或电解池中均如此。
【例题】将纯铁丝5.21克溶于过量稀盐酸中,在加热条件下,用2.53克KNO3去氧化溶液中亚铁离子,待反应后剩余的Fe2+离子尚需12毫升0.3摩/升KMnO4溶液才能完全氧化,写出硝酸钾和氯化亚铁完全反应的方程式。
【分析】铁跟盐酸完全反应生成Fe2+,根据题意可知Fe2+分别跟KMnO4溶液和KNO3溶液发生氧化还原反应,KMnO4被还原为Mn2+,那么KNO3被还原的产物是什么呢?根据电子得失守恒进行计算可得KNO3被还原的产物是NO,所以硝酸钾和氯化亚铁完全反应的化学方程式为: KNO3+3FeCl2+4HCl=3FeCl3+KCl+NO+2H2O
二、差量法
差量法是依据化学反应前后的某些“差量”(固体质量差、溶液质量差、气体体积差、气体物质的量之差等)与反应或生成物的变化量成正比而建立的一种解题方法。此法将“差量”看作化学方程式右端的一项,将已知差量(实际差量)与化学方程式中的对应差量(理论差量)列成比例,其他解题步骤与按化学方程式列比例或解题完全一样。
(一)质量差法
【例题】在1升2摩/升的稀硝酸溶液中加入一定量的铜粉,充分反应后溶液的质量增加了13.2克,问:(1)加入的铜粉是多少克?(2)理论上可产生NO气体多少升?(标准状况)
【分析】硝酸是过量的,不能用硝酸的量来求解。铜跟硝酸反应后溶液增重,原因是生成了硝酸铜,所以可利用这个变化进行求解。
3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO↑+ 4H2O 增重
192 44.8 636-504=132
X克 Y升 13.2 可得X=19.2克,Y=4.48升
(二)体积差法
【例题】10毫升某气态烃在80毫升氧气中完全燃烧后,恢复到原来状况(1.01×105Pa , 270C)时,测得气体体积为70毫升,求此烃的分子式。
【分析】原混和气体总体积为90毫升,反应后为70毫升,体积减少了20毫升。剩余气体应该是生成的二氧化碳和过量的氧气,下面可以利用烃的燃烧通式进行有关计算。
CxHy + (x+ )O2 → xCO2 + H2O 体积减少
1 1+
10 20
计算可得y=4 ,烃的分子式为C3H4或C2H4或CH4
(三)物质的量差法
【例题】白色固体PCl5受热即挥发并发生分PCl5(气)= PCl3(气)+ Cl2 现将5.84克PCl5装入2.05升真空密闭容器中,在2770C达到平衡时,容器内的压强为1.01×105Pa ,经计算可知平衡时容器内混和气体物质的量为0.05摩,求平衡时PCl5的分解百分率。
【分析】原PCl5的物质的量为0.028摩,反应达到平衡时物质的量增加了0.022摩,根据化学方程式进行计算。
PCl5(气)= PCl3(气)+ Cl2 物质的量增加
1 1
X 0.022
计算可得有0.022摩PCl5分解,所以结果为78.6%
三、十字交叉法
十字交叉法是进行二组分混和物平均量与组分量计算的一种简便方法。凡可按M1n1 + M2n2 = (n1 + n2)计算的问题,均可用十字交叉法计算的问题,均可按十字交叉法计算,算式为:
M1 n1=(M2- )
M2 n2=( -M1)
式中, 表示混和物的某平均量,M1、M2则表示两组分对应的量。如 表示平均分子量,M1、M2则表示两组分各自的分子量,n1、n2表示两组分在混和物中所占的份额,n1:n2在大多数情况下表示两组分物质的量之比,有时也可以是两组分的质量比,如在进行有关溶液质量百分比浓度的计算。十字交叉法常用于求算:混和气体平均分子量及组成、混和烃平均分子式及组成、同位素原子百分含量、溶液的配制、混和物的反应等。
(一)混和气体计算中的十字交叉法
【例题】在常温下,将1体积乙烯和一定量的某气态未知烃混和,测得混和气体对氢气的相对密度为12,求这种烃所占的体积。
【分析】根据相对密度计算可得混和气体的平均式量为24,乙烯的式量是28,那么未知烃的式量肯定小于24,式量小于24的烃只有甲烷,利用十字交叉法可求得甲烷是0.5体积
(二)同位素原子百分含量计算的十字叉法
【例题】溴有两种同位素,在自然界中这两种同位素大约各占一半,已知溴的原子序数是35,原子量是80,则溴的两种同位素的中子数分别等于。
(A)79 、81 (B)45 、46 (C)44 、45 (D)44 、46
【分析】两种同位素大约各占一半,根据十字交叉法可知,两种同位素原子量与溴原子量的差值相等,那么它们的中子数应相差2,所以答案为D
(三)溶液配制计算中的十字交叉法
【例题】某同学欲配制40%的NaOH溶液100克,实验室中现有10%的NaOH溶液和NaOH固体,问此同学应各取上述物质多少克?
【分析】10%NaOH溶液溶质为10,NaOH固体溶质为100,40%NaOH溶液溶质为40,利用十字交叉法得:需10%NaOH溶液为
×100=66.7克,需NaOH固体为 ×100=33.3克
(四)混和物反应计算中的十字交叉法
【例题】现有100克碳酸锂和碳酸钡的混和物,它们和一定浓度的盐酸反应时所消耗盐酸跟100克碳酸钙和该浓度盐酸反应时消耗盐酸量相同。计算混和物中碳酸锂和碳酸钡的物质的量之比。
【分析】可将碳酸钙的式量理解为碳酸锂和碳酸钡的混和物的平均式量,利用十字交叉法计算可得碳酸锂和碳酸钡的物质的量之比97:26
四、关系式法
实际化工生产中以及化学工作者进行科学研究时,往往涉及到多步反应:从原料到产品可能要经过若干步反应;测定某一物质的含量可能要经过若干步中间过程。对于多步反应体系,依据若干化学反应方程式,找出起始物质与最终物质的量的关系,并据此列比例式进行计算求解方法,称为“关系式”法。利用关系式法可以节省不必要的中间运算步骤,避免计算错误,并能迅速准确地获得结果。
(一)物质制备中的关系式法
【例题】含有SiO2的黄铁矿试样1克,在O2中充分灼烧后残余固体为0.76克,用这种黄铁矿100吨可制得98%的浓硫酸多少吨?(设反应过程有2%的硫损失)
【分析】根据差量法计算黄铁矿中含FeS2的量为72% ,而反应过程损失2%的硫即损失2%的FeS2 ,根据有关化学方程式找出关系式:FeS2 — 2H2SO4 利用关系式计算可得结果为:制得98%的浓硫酸117.6吨。
(二)物质分析中的关系式法
测定漂白粉中氯元素的含量,测定钢中的含硫量,测定硬水中的硬度或测定某物质组成等物质分析过程,也通常由几步反应来实现,有关计算也需要用关系式法。
【例题】让足量浓硫酸与10克氯化钠和氯化镁的混合物加强热反应,把生成的氯化氢溶于适量的水中,加入二氧化锰使盐酸完全氧化,将反应生成的氯气通入KI溶液中,得到11.6克碘,试计算混和物中NaCl的百分含量。
【分析】根据有关化学方程式可得:4HCl — I2 ,利用关系式计算可得生成氯化氢的质量是6.7克,再利用已知条件计算得出混和物中NaCl的百分含量为65% 。
五、估算法
(一)估算法适用于带一定计算因素的选择题,是通过对数据进行粗略的、近似的估算确定正确答案的一种解题方法,用估算法可以明显提高解题速度。
【例题】有一种不纯的铁,已知它含有铜、铝、钙或镁中的一种或几种,将5.6克样品跟足量稀H2SO4完全反应生成0.2克氢气,则此样品中一定含有
(A)Cu (B)Al (C)Ca (D)Mg
【分析】计算可知,28克金属反应失去1摩电子就能符合题目的要求。能跟稀H2SO4反应,失1摩电子的金属和用量分别为:28克Fe、9克Al、20克Ca、12克Mg,所以答案为A
(二)用估算法确定答案是否合理,也是我们检查所做题目时的常用方法,用此法往往可以发现因疏忽而造成的计算错误。
【例题】24毫升H2S在30毫升O2中燃烧,在同温同压下得到SO2的体积为
(A)24毫升 (B)30毫升 (C)20毫升 (D)18毫升
【分析】2H2S + 3O2 = 2SO2 + 2H2O 根据方程式系数的比例关系估算可得答案为D
六、类比法
类比法是将问题类比于旧问题,从而运用旧知识解决新问题的方法。类比法的实质是能力的迁移,即将熟悉问题的能力迁移到新情景或生疏问题上来,实现这种迁移的关键就是找准类比对象,发现生疏问题与熟悉问题本质上的类同性。运用类比法的题又可分为:自找类比对象和给出类比对象两种。前者一般比较简单,后者则可以很复杂,包括信息给予题中的大部分题目。
【例题】已知PH3在溶液中呈弱碱性,下列关于PH4Cl的叙述不正确的是
(A)PH4Cl水解呈酸性 (B)PH4Cl含有配位键
(C)PH4Cl是分子晶体 (D)PH4Cl与NaOH溶液共热可产生PH3
【分析】NH3和H4Cl的性质我们已经学过,N和P是同一主族元素性质相似,所以答案为C
七、始终态法
始终态法是以体系的开始状态与最终状态为解题依据的一种解题方法。有些变化过程中间环节很多,甚至某些中间环节不太清楚,但始态和终态却交待得很清楚,此时用“始终态法”往往能独辟蹊径,出奇制胜。
【例题】把适量的铁粉投入足量的盐酸中,反应完毕后,向溶液中通入少量Cl2 ,再加入过量烧碱溶液,这时有沉淀析出,充分搅拌后过滤出沉淀物,将沉淀加强热,最终得到固体残留物4.8克。求铁粉与盐酸反应时放出H2的体积(标准状况)。
【分析】固体残留物可肯定是Fe2O3 ,它是由铁经一系列反应生成,氢气是铁跟盐酸反应生成的,根据2Fe — Fe2O3 、Fe — H2 这两个关系式计算可得:H2的体积为1.344升
八、等效思维法
对于一些用常规方法不易解决的问题,通过变换思维角度,作适当假设,进行适当代换等使问题得以解决的方法,称为等效思维法。等效思维法的关键在于其思维的等效性,即你的假设、代换都必须符合原题意。等效思维法是一种解题技巧,有些题只有此法可解决,有些题用此法可解得更巧更快。
【例题】在320C时,某+1价金属的硫酸盐饱和溶液的浓度为36.3% ,向此溶液中投入2.6克该无水硫酸盐,结果析出组成为R2SO4·10H2O的晶体21.3克。求此金属的原子量。
【分析】21.3克R2SO4·10H2O晶体比2.6克无水硫酸盐质量多18.7克,这18.7克是从硫酸盐饱和溶液得的,所以它应该是硫酸盐饱和溶液,从而可知21.3克R2SO4·10H2O中含有11.9克结晶水、9.4克R2SO4 ,最后结果是:此金属的原子量为23
九、图解法
化学上有一类题目的已知条件或所求内容是以图像的形式表述的,解这类题的方法统称图解法。图解法既可用于解决定性判断方面的问题,也可以用于解决定量计算中的问题。运用图解法的核心问题是识图。
(一)定性判断中的图解法
这类问题常与化学反应速度、化学平衡、电解质溶液、溶解度等知识的考查相联系。解题的关键是认清横纵坐标的含义,理解图示曲线的化学意义,在此基础上结合化学原理作出正确判断。
【例题】右图表示外界条件(温度、压强)的变化对下列反 Y
应的影响:L(固)+ G(气)= 2R(气)- 热量 在图中, P1 P2 P3
(P1
Ⅱ 化学计算有哪几种方法可用
守恒法、十字交叉法、差量法、极端假设法、关系式法。
Ⅲ 化学计算的方法
你的问题太宽泛了,题目思路理清,根据化学基本原理列出算式就计算喽,比如浓度,溶解度,
Ⅳ 化学计算中的常用方法
化学计算方法有如下几种:
1、利用物质的质量分数进行计算。
2、利用化学方程式进行计算。
3、溶液配制中的相关计算,包括溶质、溶剂和溶质质量分数的计算。
4、利用物质的量进行的微粒个数的计算。
Ⅳ 化学计算常用方法与技巧
1.差量法
差量法是根据化学变化前后物质的量发生的变化,找出所谓“理论差量”。这个差量可以是质量、气体物质的体积、压强、物质的量、反应过程中热量的变化等。该差量的大小与参与反应的物质有关量成正比。差量法就是借助于这种比例关系,解决一定量变的计算题。解此类题的关键是根据题意确定“理论差量”,再根据题目提供的“实际差量”,列出比例式,求出答案。
2.守恒法
在化学中有许多守恒关系,如质量守恒、电子转移守恒、电荷守恒、化合价代数和守恒等。
(1)质量守恒
①宏观表现:变化前后质量守恒。
②微观表现:变化前后同种元素的原子个数守恒。
(2)电子转移守恒
在氧化还原反应中,氧化剂得电子总数(或化合价降低总数)等于还原剂失电子总数(或化合价升高总数)。
(3)电荷守恒
①在电解质溶液中,阴离子所带总负电荷数与阳离子所带总正电荷数必须相等。
②在离子方程式中,反应物所带电荷总数与生成物所带电荷总数必须相等且电性相同
(4)化合价代数和守恒
任一化学式中正负化合价的代数和一定等于零。借此可确定化学式。
运用守恒法解题既可避免书写繁琐的化学方程式,提高解题的速度,又可避免在纷纭复杂的解题背景中寻找关系式,提高解题的准确度。
3.关系式(量)法
化学计算的依据是物质之间量的比例关系,这种比例关系通常可从化学方程式或化学式中而得。但对复杂的问题,如已知物与待求物之间是靠很多个反应来联系的,这时就需直接确定已知量与未知量之间的比例关系,即“关系式”。其实从广义而言,很多的化学计算都需要关系式的。只是对于多步反应的计算其“关系式”更是重要与实用。
“关系式”有多种,常见的有:质量或质量分数关系,物质的量或粒子数关系式,气体体积的关系式等。
确定已知与未知之间的关系式的一般方法:
(1)根据化学方程式确定关系式:先写出化学方程式,然后再根据需要从方程式中提练出某些关系。如:
mno2+4hcl(浓)====mncl2+cl2↑+2h2o,可得如下关系:4hcl~cl2
(2)根据守恒原理确定关系式
如:2na~h2
Ⅵ 化学计算中常用的几种方法
1. 掌握化学计算中的常用方法和技巧。
2. 强化基本计算技能,提高速算巧解能力和数学计算方法的运用能力。
【经典题型】
题型一:差量法的应用
【例1】10毫升某气态烃在80毫升氧气中完全燃烧后,恢复到原来状况(1.01×105Pa , 270C)时,测得气体体积为70毫升,求此烃的分子式。
【点拨】原混和气体总体积为90毫升,反应后为70毫升,体积减少了20毫升。剩余气体应该是生成的二氧化碳和过量的氧气,下面可以利用差量法进行有关计算。
CxHy + (x+ )O2 xCO2 + H2O 体积减少
1 1+
10 20
计算可得y=4 ,烃的分子式为C3H4或C2H4或CH4
【规律总结】
差量法是根据物质变化前后某种量发生变化的化学方程式或关系式,找出所谓“理论差量”,这个差量可以是质量差、气态物质的体积差、压强差,也可以是物质的量之差、反应过程中的热量差等。该法适用于解答混合物间的反应,且反应前后存在上述差量的反应体系。
【巩固】
1、现有KCl、KBr的混合物3.87g,将混合物全部溶解于水,并加入过量的AgNO3溶液,充分反应后产生6.63g沉淀物,则原混合物中钾元素的质量分数为
A.0.241 B.0.259 C.0.403 D.0.487
题型二:守恒法的应用
【例2】Cu、Cu2O和CuO组成的混合物,加入100Ml0.6mol/LHNO3溶液恰好使混合物溶解,同时收集到224mLNO气体(标准状况)。求:
(1) 写出Cu2O跟稀硝酸反应的离子方程式。
(2) 产物中硝酸铜的物质的量。
(3) 如混合物中含0.01moLCu,则其中Cu2O、CuO的物质的量分别为多少?
(4) 如混合物中Cu的物质的量为X,求其中Cu2O、CuO的物质的量及X的取值范围。
【点拨】本题为混合物的计算,若建立方程组求解,则解题过程较为繁琐。若抓住反应的始态和终态利用守恒关系进行求解,则可达到化繁为简的目的。
(1) 利用电子守恒进行配平。3Cu2O+14HNO3==6Cu(NO3)2 + 2NO↑+7H2O
(2) 利用N原子守恒。n(HNO3)== 0.06mol,n(NO)== 0.01mol,
则n(Cu(NO3)2)==(0.06-0.01)/2=0.025mol
(3) 本题混合物中虽含有Cu、Cu2O和CuO三种物质,但参加氧化还原反应的只有 Cu、Cu2O,所以利用电子守恒可直接求解。
转移电子总数:n(e-)= n(NO)×3==0.03mol
Cu提供电子数:0.01×2=0.02mol
Cu2O提供电子数:0.03-0.02=0.01mol n(Cu2O)=0.01/2=0.005mol
n(CuO)=0.0025-0.01-0.005×2=0.005mol
(4) 根据(3)解法可得n(Cu2O)=0.015-Xmol n(CuO)=X-0.005mol。根据电子守恒进行极端假设:若电子全由Cu提供则n(Cu)=0.015mol;若电子全由Cu2O提供则n(Cu2O)=0.015mol,则n(Cu2+)==0.03mol大于了0.025mol,说明n(Cu)不等于0,另根据n(CuO)=X-0.005mol要大于0可得n(Cu)>0.005mol。所以0.005mol 1时,二氧化碳过量,则固体产物为KHCO3。答案为:①K2CO3+KOH ②K2CO3 ③K2CO3+KHCO3 ④KHCO3
(2)由:①CO2+2KOH=K2CO3+H2O ②CO2+KOH=KHCO3
22.4L(标态) 138g 22.4L(标态) 100g
2.24L(标态) 13.8g 2.24L(标态) 10.0g
∵ 13.8g>11.9g>10.0g
∴ 得到的白色固体是 K2CO3和KHCO3的混合物。
设白色固体中 K2CO3 x mol,KHCO3 y mol,即
①CO2+2KOH=K2CO3+H2O ②CO2+KOH=KHCO3
x mol 2x mol x mol y mol y mol y mol
x mol+y mol=2.24L/22.4mol"L—1=0.100 mol (CO2)
138g"mol—1 × x mol 100 g"mol—1 × y mol=11.9g (白色固体)
解此方程组,得
x=0.0500mol (K2CO3)
y=0.0500mol (KHCO3)
∴ 白色固体中 ,K2CO3 质量为 138g"mol—1 × 0.0500mol=6.90g
KHCO3质量为 100 g"mol—1 ×0.0500mol=5.00g
消耗 KOH 物质的量为
2x mol+y mol=2×0.05
Ⅶ 化学里有什么计算方法
1.守恒( 元素守恒,电子守恒,质量守恒外加电解质中的三守恒(物料,电荷,质子守恒))
2.差量法 解决选择题很有效,一定要灵活运用。差量法是根据在化学反应中反应物与生成物的差量和造成这种差量的实质及二者关系,列出比例式求解的解题方法。差量的大小与参与反应的物质的有关量成正比。我们学过的化学反应前后有固体质量差、气体质量差、气体体积差等都可用差量法求解。解题的关键是做到明察秋毫,抓住造成差量的实质,即根据题意确定“理论差值”,再根据题目提供的“实际差量”,列出正确的比例式,求出答案。
3.解决有机物同分异构的方法:定位移动法
4.十字交叉法是进行二组分混和物平均量与组分量计算的一种简便方法。凡可按M1n1 + M2n2 = M(n1 + n2)计算的问题,均可用十字交叉法计算的问题,均可按十字交叉法计算,
式中,M表示混和物的某平均量,M1、M2则表示两组分对应的量。如 M表示平均分子量,M1、M2则表示两组分各自的分子量,n1、n2表示两组分在混和物中所占的份额,n1:n2在大多数情况下表示两组分物质的量之比,有时也可以是两组分的质量比,如在进行有关溶液质量百分比浓度的计算。十字交叉法常用于求算:混和气体平均分子量及组成、混和烃平均分子式及组成、同位素原子百分含量、溶液的配制、混和物的反应等。
Ⅷ 有关化学计算的一些方法
守恒法 利用反应体系中变化前后,某些物理量在始、终态时不发生变化的规律列式计算。主要有:(1)质量守恒;(2)原子个数守恒;(3)电荷守恒;(4)电子守恒;(5)浓度守恒(如饱和溶液中);(6)体积守恒;(7)溶质守恒;(8)能量守恒。
差量法 根据物质发生化学反应的方程式,找出反应物与生成物中某化学量从始态到终态的差量(标准差)和实际发生化学反应差值(实际差)进行计算。主要有:(1)质量差;(2)气体体积差;(3)物质的量差;(4)溶解度差……实际计算中灵活选用不同的差量来建立计算式,会使计算过程简约化。
平均值法 这是处理混合物中常用的一种方法。当两种或两种以上的物质混合时,不论以何种比例混合,总存在某些方面的一个平均值,其平均值必定介于相关的最大值和最小值之间。只要抓住这个特征,就可使计算过程简洁化。主要有:(1)平均相对分子质量法;(2)平均体积法;(3)平均质量分数法;(4)平均分子组成法;(5)平均摩尔电子质量法;(6)平均密度法;(7)平均浓度法……
关系式法 对于多步反应体系,可找出起始物质和最终求解物质之间的定量关系,直接列出比例式进行计算,可避开繁琐的中间计算过程。具体有:(1)多步反应关系法:对没有副反应的多步连续反应,可利用开始与最后某一元素来变建立关系式解题。(2)循环反应关系法:可将几个循环反应加和,消去其中某些中间产物,建立一个总的化学方程式,据此总的化学方程式列关系式解题。
十字交叉法 实际上是一种数学方法的演变,即为a1x1+a2x2=a平×(x1+x2)的变式,也可以转化为线段法进行分析。(1)浓度十字交叉法;(2)相对分子质量十字交叉法等。
极值法 当两种或多种物质混合无法确定其成分及其含量时,可对数据推向极端进行计算或分析,假设混合物质量全部为其中的某一成分,虽然极端往往不可能存在,但能使问题单一化,起到了出奇制胜的效果。常用于混合物与其他物质反应,化学平衡混合体系等计算。
讨论法 当化学计算中,不确定因素较多或不同情况下会出现多种答案时,就要结合不同的情况进行讨论。将不确定条件转化为已知条件,提出各种可能答案的前提,运用数学方法,在化学知识的范围内进行计算、讨论、推断,最后得出结果。主要有以下几种情况:(1)根据可能的不同结果进行讨论;(2)根据反应物相对量不同进行讨论;(3)运用不定方程或函数关系进行讨论。
估算法 有些化学计算题表面看来似乎需要进行计算,但稍加分析,不需要复杂计算就可以推理出正确的答案。快速简明且准确率高,适合于解某些计算型选择题。但要注意,这是一种特殊方法,适用范围不大。
3.基本概念、基本理论、元素化合物、有机化学基础、化学实验等各部分内容中都隐含许多计算因素问题,复习中要加以总结归类。如,有机化合物内容中的化学计算因素问题主要有:
(1)同系物通式的计算(通式思想的运用);
(2)同分异构体种数计算(空间想象、立体几何知识);
(3)有机化合物结构简式的确定(有机化合物性质跟所有化学基本计算的综合);
(4)有机物燃烧规律的计算(跟气体燃烧实验、气体吸收实验、气体干燥实验等的综合);
(5)有机反应转化率、产量的计算(跟工业生产实际的结合)。
Ⅸ 化学计算方法有哪些分别怎样应用,请举例说明
化学计算方法汇总
1、元素守恒法(适用于多个化学反应的计算)
已知:2NO2 + 2NaOH == NaNO3 + NaNO2 + H2O;NO + NO2 + 2NaOH == 2NaNO2 + H2O
将224ml(标准状况)NO和NO2 的混合气溶于20mlNaOH 溶液中,恰好完全反应并无气体逸出,则NaOH 溶液的物质的量浓度为 。
解:生成物钠盐NaNO3、NaNO2 中Na原子与N原子的个数比都为1:1,即n(Na)= n(N),又根据N元素守恒,即n(N) = n(NO) + n(NO2),且依题意反应物恰好转化为钠盐,所以
n(NaOH) = n(NO) + n(NO2)= 0.01mol c(NaOH) = = 0.5mol/L
2、极限假设法(适用于混合物的计算)
将镁、铝、锌组成的混合物与足量盐酸作用,放出H2的体积为2.8L(标准状况),则三种金属的物质的量之和可能为( C)
A、0.250mol B、0.125mol C、0.100mol D、0.080mol
解:假设原样品单纯为镁,则放出2.8LH2需要镁0.125mol
假设原样品单纯为铝,则放出2.8LH2需要铝0.083mol
假设原样品单纯为锌,则放出2.8LH2需要锌0.125mol
所以这三者混合物,放出2.8LH2需要的物质的量应介于0.083与0.125mol之间。
3、得失电子守恒法()
在一定温度下,某浓度的硝酸与金属锌反应生成NO和NO2 的物质的量之比为3:1,则要使1mol金属锌完全反应,需要硝酸的物质的量为 。
解:氧化过程 Zn — 2e— Zn2+
还原过程 HNO3 + 3e— NO
9X 3X
HNO3 + e— NO2
X X
金属锌失去的电子总数为:2•1mol
硝酸得到的电子总数为:9X + X
根据得失电子守恒:2•1mol = 9X+ X 求得 X = 0.2mol
n(HNO3)=n(NO) + n(NO2) + 2n[Zn(NO3)2]=0.8mol + 2•1mol=2.8mol
变价硝酸 无变价硝酸
4、十字交叉法(适用于求混合物之间的物质的量之比)
用向下排空气法在容积为Vml的集气瓶中收集氨气。由于空气尚未排净,最后瓶内气体平均相对分子质量为19,将此集气瓶倒置于气体中,瓶内水面上升到一定高度即停止,则同温同压下,瓶内剩余气体体积为 。
解:集气瓶内的气体可以看成是氨气与空气的混合气,用十字交叉法可求得两者的体积比:
氨气 17 10
19 可得 V(氨气): V(空气) = 10 :2 = 5:1
空气 29 2
则空气的体积占 Vml,即剩余的气体。
5、差量法(明确参加反应的物质与物质ΔV或Δn或Δm之间的量关系)
Cl2和NO2在室温下可以化合生成一种新的气态化合物C,为了测定C的分子组成,进行以下实验。取混合气体总体积5L,测定反应后总体积随Cl2在混合气体中所占的体积分数(x)的变化规律。实验测知当Cl2所占体积分数为20%或60%时,反应后的总体积均为4L。
(1)通过分析和计算求得反应的化学方程式: 。
(2)试讨论当x的取值范围不同时,反应后总体积(V)随x变化的函数关系。
解:(1)根据参加反应的Cl2及NO2与气体总体积减少量的关系是定值比例,可知
当Cl2所占体积分数分别为20%或60%两种情况下,参加反应Cl2的量必须相同,才能使总体积减少量都为(5L—4L)=1L,则
参加反应的Cl2是1L ,NO2是2L ,ΔV=1L
化学方程式中系数比为1:2:2 Cl2 + 2NO2 == 2 NO2Cl
(2)Cl2完全反应,则0 <x ≤ ,V= 5L—5L•x
NO2完全反应,则1 >x > ,V= 5L— •5L•(1—x)