导航:首页 > 知识科普 > 2548的简便方法计算

2548的简便方法计算

发布时间:2022-01-20 19:03:39

A. 简便计算方法

常用的简便算法有以下几种
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
例5
计算:16×25×25
因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
在本道题目中,利用第一种方法即可,也就是51乘以59加41的和再加上22乘以68加上32的和,等于5100加上2200等于6300

B. 简便计算的方法是

小学数学简便运算方法归类

一、带符号搬家法(根据:加法交换律和乘法交换率)

当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符号搬家”。

(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;a×b×c=a×c×b,

a÷b÷c=a÷c÷b,a×b÷c=a÷c×b,a÷b×c=a×c÷b)

二、结合律法

(一)加括号法

1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)

a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c), a-b-c= a-( b +c); 2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)

a×b×c=a×(b×c), a×b÷c=a×(b÷c), a÷b÷c=a÷(b×c), a÷b×c=a÷(b÷c)

(二)去括号法

1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)

a+(b+c)= a+b+c a +(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c 2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)

a×(b×c) = a×b×c, a×(b÷c) = a×b÷c, a÷(b×c) = a÷b÷c , a÷(b÷c) = a÷b×c

三、乘法分配律法 1.分配法

括号里是加或减运算,与另一个数相乘,注意分配

24×(11/12-3/8-1/6-1/3)

2.提取公因式

注意相同因数的提取。

0.92×1.41+0.92×8.59 16/5×7/13-3/7×7/13


3.注意构造,让算式满足乘法分配律的条件。

7/25×103-7/25×2-7/25

2.6×9.9

四、借来还去法

看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。

9999+999+99+9 4821-998 五、拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”

如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。 3.2×12.5×25 1.25×88 3.6×0.25 六、巧变除为乘

也就是说,把除法变成乘法,例如:除以1/4可以变成乘4。

7.6÷0.25 3.5÷0.125 七、裂项法

分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 分数裂项的三大关键特征:

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

分数裂项的最基本的公式

这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。有余力的孩子可 以学一下。

C. 简便计算的规律

1、两个加数交换位置,和不变.这叫做加法交换律.用字母表示:
a+b=b+a
2、先把前两个数相加,或者先把后两个数相加,和不变.这叫做加法结合律.用字母表示:(a+b)+c=a+(b+c)
3、交换两个因数的位置,积不变.这叫做乘法交换律.用字母表示:a×b=b×a
4、先乘前两个数,或者先乘后两个数,积不变.这叫做乘法结合律.用字母表示:(a×b)×c=a×(b×c)
5、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加.这叫做乘法分配律.用字母表示:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c(注意:除法没有分配律)
6、乘法分配律应用:(a—b)×c=a×c—b×c
7、减法性质:a-b-c=a-(b+c)
8、除法性质:a÷b÷c= a÷c÷b= a÷(b×c)
9、牢记:25×4=100 125×8=1000

D. 简便方法计算怎么算的

后面两个先相加,再和第一个相加

E. 简便运算的技巧

简便计算是采用特殊的计算方法,运用运算定律与数字的基本性质,从而使计算简便,将一个很复杂的式子变得很容易计算出结果。

主要用三种方法:加减凑整、分组凑整、提公因数法。

他们使用的都是数学计算中的拆分凑整思想。

主要步骤:

①遇见复杂的计算式时,先观察有没有可能凑整;

②运用四则运算凑成整十整百之后再进行简便计算。
2/4
加减凑整法

1、将计算式中的某一个数拆分,使其能与其他的数凑成整十,整百【例1】;

2、补上一个数,能够与其他数凑整,最后再减去这个数
分组凑整法

在只有加减法的计算题中,将算式中的各项重新分下组凑整,主要采用两个公式:G老师讲奥数(微)。【例3】

加法结合律:a+b+c=a+(b+c)=(a+b)+c;

减法的性质:a-b-c=a-(b+c)。
提公因数法

使用乘法分配律提取公因数,a x (b±c)=a x b±a x c;

如果没有公因数,可以根据乘法结合律变化出公因数,详见【例4】。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。
做简算,是享受。细观察,找特点。

连续加,结对子。连续乘,找朋友。

连续减,减去和。连续除,除以积。

减去和,可连减。除以积,可连除。

乘和差,分别乘。积加减,莫慌张,

同因数,提出来,异因数,括号放。

同级算,可交换。特殊数,巧拆分。

合理算,我能行。

1方法一:带符号搬家法

当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

a+b+c=a+c+b

a+b-c=a-c+b

a-b+c=a+c-b

a-b-c=a-c-b

例如:

a×b×c=a×c×b

a÷b÷c=a÷c÷b

a×b÷c=a÷c×b

a÷b×c=a×c÷b)

例如:

2方法二:结合律法

(一)加括号法

1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。

(二)去括号法

1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。

2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。

3方法三:乘法分配律法

1.分配法

括号里是加或减运算,与另一个数相乘,注意分配

例:8×(12.5+125)

=8×12.5+8×125

=100+1000

=1100

2.提取公因式

注意相同因数的提取。

例:9×8+9×2

=9×(8+2)

=9×10

=90

3.注意构造,让算式满足乘法分配律的条件。

例:8×99

=8×(100-1)

=8×100-8×1

=800-8

=792

4方法四:凑整法

看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。

例:9999+999+99+9

=(10000-1)+(1000-1)+(100-1)+(10-1)

=(10000+1000+100+10)-4

=11110-4

=11106

5方法五:拆分法

拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。

例:32×125×25

=(4×8)×125×25

=(4×25)×(8×125)

=100×1000

=100000

6方法六:巧变除为乘

除以一个数等于乘以这个数的倒数

7方法六:裂项法

分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,需注意:

1.连续性

2.等差性

计算方法:头减尾,除公差。

8方法六:找朋友法

例题:

例1:

283+52+117+148

=(283+117)+(52+48)

(运用加法交换律和结合律)。

减号或除号后面加上或去掉括号,后面数值的运算符号要改变。

例2:

657-263-257

=657-257-263

=400-263

(运用减法性质,相当加法交换律。“带符号搬家”)

例3:

195-(95+24)

=195-95-24

=100-24

(运用减法性质)

例4:

150-(100-42)

=150-100+42

(去括号时,括号前面是减号,括号里面的运算符号要变成逆运算)

例5:

(0.75+125)x8

=0.75x8+125x8=6+1000

. (运用乘法分配律))

例6:

( 125-0.25)x8

=125x8-0.25x8

=1000-2

(同上)

例7:

(1.125-0.75)÷0.25

=1.125÷0.25-0.75÷0.25

=4.5-3=1.5。

( 运用除法性质)

例8:

(450+81)÷9

=450÷9+81÷9

=50+9=59.

(同上,相当乘法分配律)

例9:

375÷(125÷0.5)

=375÷125x0.5=3x0.5=1.5.

(运用除法性质)

例10:

4.2÷(0.6x0.35)

=4.2÷0.6÷0.35

=7÷0.35=20

(运用除法性质)

例11:

12x125x0.25x8

=(125x8)x(12x0.25)

=1000x3=3000.

(运用乘法交换律和结合律)

例12:

(175+45+55+27)-75

=175-75+(45+55)+27

=100+100+27=227.

(运用加法性质和结合律)

F. 2548一用什么简便方法

2548减589减1048的简便运算
2548减589减1048
=2548-1048-600+11
=1500-600+11
=911

G. 用简便的方法计算

简便方法是用270除以9再除以5,等于30除以5,等于6。

H. 2548 -(748-452)的简便计算

简便计算过程方法如下
解:2548 -(748-452)
=2548 -748+452
=1800+452
=2252

I. 数学简便计算的方法

首同尾合十,例如23,27这两个数就是首同尾合十,在计算时,还拿23,27这两个数举例,23×27=10十位上的数×10(十位上的数加1)+两数个位上的数的积,在这里就是20×30+3×7=621。
尾同首合十,例如46,66这两个数就是尾同首合十,在计算时,还拿46,66这两个数举例,46×66=10(4+1)×(10×6)+6^2=3036

J. 的简便计算的方法

简便计算的方法例子演示67+12+33+58
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
67+12+33+58

=67+33+(58+12)
=100+70
=170

(10)2548的简便方法计算扩展阅读\竖式计算-计算过程:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:7+3=0 向高位进1

步骤二:6+3+1=0 向高位进1

根据以上计算步骤组合计算结果为100

存疑请追问,满意请采纳

阅读全文

与2548的简便方法计算相关的资料

热点内容
404x125的简便运算方法 浏览:10
水泥多孔砖砌墙方法图片 浏览:705
孢谷草种植方法 浏览:283
莴笋青菜种植方法 浏览:736
前列腺增生怎么治疗方法 浏览:846
12伏蓄电池存电量计算方法 浏览:219
冲压工36技计算方法计算实例 浏览:858
骨化三醇免疫治疗方法 浏览:306
三联疗法如何服用方法 浏览:426
93乘43加91的简便方法 浏览:393
海螺吃了头晕有什么方法解决 浏览:812
如何写通项方法 浏览:674
小学生如何写作业快的方法 浏览:347
卫星手机夜景拍摄方法 浏览:97
怎么做瘦肚子最快方法 浏览:11
考场查词典技巧和方法 浏览:639
魔芋水的制作方法视频 浏览:493
同分母分数加减法教学方法分析 浏览:323
平焊单面焊双面成型的教学方法 浏览:601
查询电脑图片有多张的方法 浏览:429